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ABSTRACT 

Excessive amounts of chemicals and ions flowing into water sources, which are 

mainly due to efflux from agricultural lands, cause serious environmental and human-

health related concerns. The lack of affordable and real-time monitoring systems for 

these contaminants limits effective conservation and management strategies. To establish 

a basis for developing an effective, fast, real-time, and affordable sensing system, 

dielectric spectroscopy has been applied to characterize agriculturally-relevant aqueous 

solutions of most commonly found ions in tile drainage water. Dielectric spectra of 

aqueous sodium chloride (NaCl), sodium nitrate (NaNO3), and sodium sulphate (Na2SO4) 

ionic solutions, which are the common pollutants found in agricultural tile drainage 

waters in Iowa and the United States, were measured over the frequency range from 200 

MHz to 20 GHz, at temperatures 5 °C to 30 °C in 5 °C increments and for concentrations 

in the range 0 to 20 millimoles per liter. 

In this work, the measured dielectric spectra were fitted with a Debye model using 

a non-linear, weighted, least-squares analysis. Uncertainties due to random and 

systematic errors, that contribute to the measured dielectric spectra and become critical in 

the context of low concentration aqueous solutions, have been assessed. Moreover, two 

methods of calculating associated uncertainties of the fitting parameters, covariance 

matrix and Monte Carlo methods have been performed. The results show that the 

numerical approach taken by the Monte Carlo method, while yielding the same estimates, 

reduces the tediousness associated with the analytical covariance matrix method.  

Next, the fitting parameters for the Debye model, which include static 

permittivity, relaxation time, and specific conductivity, have been extracted as potential 
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indicators of ion concentration and type. A method of judiciously exploiting these 

indicators, by means of a 3D trajectory plot, is proposed to uniquely identify an ion and 

infer its concentration from the benchmark data provided in this work. 

In addition, for separate ionic aqueous solutions of NaCl, NaNO3, and Na2SO4, 

concentration- and temperature-dependent parametric models of static permittivity, 

relaxation time, and specific conductivity that account for physical chemistry and 

molecular dynamics present in these systems have been developed. These models provide 

an accurate representation of the radio-frequency (200 MHz to 1 GHz) and microwave (1 

to 20 GHz) dielectric spectrum for any of these agriculturally-relevant solutions at a 

particular concentration and temperature within the ranges studied. The research 

presented in this dissertation lays a foundation upon which an efficient, real-time, field-

deployable, and economically feasible electrical sensing system can be designed for the 

efficient monitoring and analysis of agricultural run-off. 
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CHAPTER 1.    GENERAL INTRODUCTION 

1.1. Research Question 

The research presented herein addresses the concept of employing the method of 

dielectric spectroscopy (DS) within radio-frequency (RF) and microwave (MW) frequency 

ranges to identify ions and estimate their concentrations in agriculturally-relevant aqueous 

solutions. The goal of this research is to conduct precision and high-accuracy laboratory-

based measurements to characterize the dielectric properties of target ions, as well as, to 

perform a careful assessment of the measurement uncertainties for reliable interpretation of 

measurement data. Another goal of the research is to extract meaningful indicators and 

develop a model from the dielectric spectra that allow the concentration and type of ions to 

be uniquely determined. This research is important in view of the need for monitoring 

systems that enable efficient management of excessive pollutants in water run-off in the 

Midwestern United States. The DS-based method lays a foundation upon which an effective, 

fast, real-time, and affordable sensor can be designed to operate in agriculturally-relevant 

conditions. 

1.2. Problem Statement 

In November 2014 it was publicly reported that the nitrate level in the Des Moines 

and Raccoon Rivers, IA, has reached its recent historic and unprecedented high [1]. These 

two rivers are the main sources of drinking water for the city of Des Moines [2]. High levels 

of nitrates in drinking water can be extremely lethal to infants a few months old [3]. It can 

also be a cause of thyroid cancer, miscarriage, and toxic to fish and other forms of aquatic 

life, affecting Midwestern lakes, streams, and rivers all the way to the Gulf of Mexico [4]. 

The excessive concentration of nitrate, and potentially other contaminant substances, is due  
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Figure  1.1    Drawing of a cropland without a tile drainage-system (a), and with a tile-
drainage system (b). The perforated pipes are typically deployed 1 m below the soil surface 

and spaced 10 to 30 m apart. This picture is redrawn from the original source [5]. 

to efflux from subsurface tile drainage systems of agricultural lands [6]. Tile drainage 

systems, which are designed to control the height of the water table to provide suitable 

conditions for crop production and field operations [7], is a type of drainage system (Figure 

1.1) that allows for removal of the excess amount of water from the soil by using a network 

of perforated pipes that are typically deployed about 1 m below the soil surface. However, 

owing to the fact that a tile drainage system provides a flow-path to the surface streams, 

soluble nutrients and contaminants from the croplands may be washed directly into those 

streams [6]. A 1987 USDA report [8] estimates that nearly 110 million acres of U.S. 

farmland are artificially drained. The report also suggests that this quantity will continue to 

grow with the increasing trend for adoption of tile drainage on previously undrained lands. 

In order to make significant strides in developing effective conservation and 

management systems designed to limit chemical efflux from agricultural lands, especially in 

tile-drained regions where chemical export through the subsurface drainage lines is a major 

concern, it is critical that the monitoring system be able to accurately track chemicals’ 

dynamics. Since the concentration of the chemicals is tightly linked to the local hydrology 

(a) (b) 
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and changes rapidly in time, space, and with temperature, ‘spot and send-to-lab’ analysis 

yields incomplete data. All of these issues reinforce the need for effective monitoring that 

can inform real-time mitigation strategies for unwanted chemicals (ions) in water. Such a 

system needs cheap sensors that can be deployed on a relatively fine spatial scale. In the next 

section, a brief review of current monitoring systems and their principles is presented. 

1.3. Current Ion Monitoring Systems 

In recent years, great efforts have been devoted to the development of effective ion 

monitoring systems that are capable of operating with very low (~ millimoles per liter), 

agriculturally relevant concentrations. Of all the methods found in literature, the two 

principle approaches are ion-selective-electrode (ISE) [9] and ultraviolet (UV) absorption 

[10] technologies.  

1.3.1. Ion-Selective Electrode (ISE) Technology 

In ion-selective electrode (ISE) technology, which is an electrochemical method, the 

particular ion of interest interacts directly with a specialized electrode membrane. As shown 

in Figure 1.2, a small voltage is developed across the membrane when the target ion diffuses 

through from the high concentration side to the lower concentration side. This voltage is 

proportional to the concentration of the target ion [9].  

In ISE technology, the type of the membrane determines which ion can be detected. 

The types of membranes are generally based on silicate glass to detect Na+ and H+ ions, 

crystalline (solid state) membranes to detect Cl- and F- ions, organic liquid membranes to 

detect Ca2
+ and divalent ions, and polymer membranes composed of polyvinylchloride 

(PVC) to detect K+, Ca2
+, Cl-, and NO3

- ions [11]. Even though this approach has a few key  
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Figure  1.2    Ion-selective electrode (ISE) sensor and membrane. The membrane allows 
sodium ions to cross and, therefore, a concentration-dependent voltage is generated across 

the membrane. The ISE sensor photo used in the figure, at right, is from Neulog [12]. 

advantages like being easy to use and relatively inexpensive1 compared to its counterparts, in 

practice, it can experience serious interference from the presence of other ions because no 

membrane is selective to only one ion. Moreover, there is a need for low solubility of the 

membrane so that it does not dissolve in the sample solution, which diminishes the suitability 

of this approach for long continuous periods of deployment in the field environment [9]. 

1.3.2. Ultraviolet (UV) Absorption Technology 

In ultraviolet (UV) absorption technology, the sensors rely on the principle that 

absorbing substance in solution (in this case the dissolved ions) absorb electromagnetic 

radiation in the UV spectral range, allowing the ions to be identified according to their 

spectral fingerprint. These sensors can measure nitrate concentration, over a wide range of 

environmental conditions from ocean to runoff in rivers and stream [10]. As illustrated in 

Figure 1.3, a built-in photometer is designed to measure the intensity of the UV light passing 

through a sample in comparison with that of a reference light, in order to allow the   

                                                   
1 At the time of writing, a typical ISE sensor “Neulog-241 Nitrate Sensor [12]” costs around $400. 
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Figure  1.3    General design and key components of field-deployable ultraviolet (UV) sensor. 
This picture is modified and redrawn from the original source [10]. UV sensor photo used in 

the figure is from Hach [13]. 

absorbance of the substance to be calculated. The concentration of an absorbing substance 

can be calculated according to Beer-Lambert law [14] that provides a direct correlation 

between the absorbance, the concentration, and the path length of the sample. 

This technology, however, requires highly monochromatic UV radiation which is 

difficult to realize in practice, leading to prohibitive installation and maintenance costs1 of 

the sensor. The cost of these instruments prohibits their deployment at multiple points in a 

study area and the risk of damage to unattended instruments makes them impractical for 

watershed monitoring. Moreover the UV sensor may also suffer from the interference of 

other ions and organic compounds with similar absorbance as the ion of interest. At high 

concentrations of ions, an increase in inter-ionic interactions, e.g., creation of ion-pairs [16], 

also causes interference and limits the capability of UV sensor to predict the concentration 

accurately. 

In summary, current ion monitoring systems do not meet all criteria for an effective, 

fast, real-time, and affordable monitoring system to operate in agriculturally relevant 

conditions. Therefore, there is a need to develop a new technique and sensing strategy to 

tackle the problem. In the next section, the method proposed in this project, based upon 

radio-frequency (RF) and microwave (MW) dielectric spectroscopy, which lays a foundation 

                                                   
1 At the time of writing, a typical UV sensor “SUNA v2 UV Nitrate Sensor [15]” costs around $25,000. 
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toward a real-time, potentially low-cost, and nondestructive ionic monitoring system, is 

introduced.  

1.4. Dielectric Spectroscopy 

Dielectric spectroscopy (DS), which probes the interaction of a sample with an 

applied time-varying electric field with frequency f, is a powerful technique to characterize 

the physical and chemical properties of ionic aqueous solutions, particularly at radio and 

microwave frequencies [17]. The dielectric spectral response, i.e., broadband complex 

relative permittivity εT(f) = ε'(f) - jε"(f) of an ionic aqueous solution, is determined by its 

molecular structure and available polarization mechanisms therein. Real relative permittivity 

ε'(f) indicates the extent to which electrical energy is stored by the sample, while imaginary 

relative permittivity ε"(f) indicates the extent to which electrical energy is dissipated in the 

sample. By measuring dielectric properties, therefore, we can relate the effect of structure-

influencing parameters such as ion concentration, ion type, and temperature, to the 

characteristics of the dielectric spectral response.  

Dielectric spectroscopy is able to probe dynamic processes over a broad range of 

frequencies from hundreds of hertz to hundreds of gigahertz and is therefore a widely used 

tool in materials science to characterize solids, polymers, and liquids. For ionic aqueous 

solutions, the polarization – related to ε'(f) – and the dissipation of energy – related to ε"(f) - 

can be essentially separated into three additive contributions: 

i. Always present are the intra-molecular forces, also known as permanent molecular 

dipoles. This contribution is associated with the bonds between atoms which create a 

molecule. 
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ii. Second are the inter-molecular forces which correspond to the forces present between 

adjacent molecules or ions, in the form of molecule-molecule, ion-molecule, or ion-

ion interactions. As a result, we will have different types of permanent molecular 

dipoles, each experiencing a different type of inter-molecular forces. 

iii. The third contribution comes from the migration of charge carriers, also known as 

conductivity, under the influence of an applied electric field. Note that the 

conductivity term contributes solely to the energy dissipation in the dielectric spectral 

responses. 

Under the influence of a time-varying applied electric field, each type of permanent 

molecular dipole tries to align with the direction of the applied field. At sufficiently low 

frequency, all molecular dipoles contribute to the polarization of the sample [18]. For each 

molecular dipole, there exists a characteristic frequency, which is the inverse of a 

characteristic parameter called relaxation time, around which the molecular dipole loses its 

ability to follow the reorientations of the applied field, due to viscous forces at work on it, for 

example. When for a particular molecular dipole the frequency of the applied electric field 

exceeds the inverse of the relaxation time, the dipoles cannot keep up the pace with the 

change in direction of the applied field. The molecular dipole, thus, does not contribute to the 

total polarization for frequencies well above this relaxation frequency. This effect manifests 

itself as a drop in the real part of permittivity, and is observed to be paired with a peak in the 

imaginary part. Such a process is called a dipolar (rotational) relaxation process and can 

provide information concerning the structure of the sample. In DS, any molecular dipole, 

whether permanent or induced, produces a relaxation process that exhibits dε'/df < 0 and 

whose relaxation frequency is defined by the condition dεd"/df = 0. For different molecules,  
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Figure  1.4    Types of water-based molecular dipoles and charge carriers present in a simple 
ionic aqueous solution of sodium chloride (NaCl). 

these relaxation processes can occur at different frequencies far from each other, in which 

case they can easily be distinguished, or they can overlap with each other, in which case a 

meticulous task of accurate decomposition of the spectrum is required. 

As demonstrated in Figure 1.4, the principle types of permanent molecular dipoles in 

low concentration (~ mmol/L) ionic aqueous solution are [19] :  

1) Water molecules affected by inter-molecular hydrogen-bond forces (mechanism 1) 

2) Free (bulk) water molecules not connected to any hydrogen bond (mechanism 2) 

3) Water molecules affected by ion-molecule forces. These molecular dipoles are in the 

hydration layers of positive charge (cation) and the hydration layers of negative 

charge (anion) (mechanism 3).  

4) In addition, anion as an electron carrier and cation as a hole carrier [20] both 

contribute to conductivity constructively (equivalent to electrical current). 

Experiments show that the relaxation processes of molecules associated with 

mechanism 1, i.e., hydrogen-bonded water molecules, and those associated with mechanism 

3, i.e., water molecules in the hydration layers of cations and anions, occur within the micro- 
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Figure  1.5    A schematic of dielectric spectra of a simple ionic aqueous solution and 
relaxation processes corresponding to different dipolar mechanisms. The three-state model 
mentioned for mechanism 3 comprises the relaxation processes of hydrogen-bonded water 

molecules, hydration water molecules of cation, and hydration water molecules of anion [21]. 

wave frequency range at around 18 GHz [21]. Free water molecules (mechanism 2) are able 

to keep pace with the external field and their relaxation process happens to be in mm-wave 

regions at around 110 GHz [22]. Conductivity (mechanism 4) is manifested at lower 

frequencies of the imaginary dielectric spectra, ε"(f). Non-rotational relaxation processes 

which are due to vibrational and electronic transitions of intra-molecule forces take place at 

infrared (IR) and ultraviolet (UV) regions of the frequency spectrum. Figure 1.5 depicts, 

qualitatively, the dielectric spectrum of a simple low-concentration ionic aqueous solution 

and the relaxation processes corresponding to the different dipolar mechanisms illustrated in 

Figure 1.4. 

The RF and MW frequency regions (as specified in Figure 1.5) of the dielectric 

spectra, where three of the relaxation mechanisms take place, i.e., mechanisms 1, 3 and 4 

(Figure. 1.5), offer low cost and high portability in terms of electronics, compared with 

higher frequencies. A method based on dielectric spectroscopy, therefore, can be employed 
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as a foundation upon which a prototype sensor will be designed to operate at RF and MW 

frequencies [23]. In the next section, the research objectives are set. 

1.5. Research Objectives 

The dielectric properties of various moderate- and high-concentration solutions of 

mono/bi-valent ions dissolved in water have been characterized in prior works [16, 24-26]. 

The most frequently occurring ions in subsurface drainage water generally are, in decreasing 

order, chloride Cl-, nitrate NO3
-, sulphate SO4

2-, and, to a lesser degree, nitrite NO2
- and 

phosphate PO4
3- [27]. Recent research conducted at Iowa State University [28] has also found 

that the most common dissolved ions present in the agricultural tile drainage waters of central 

Iowa are, in descending order, bicarbonate HCO3
-, calcium Ca2+, magnesium Mg2+, nitrate 

NO3
-, chloride Cl-, sodium Na+, and sulphate SO4

2-. In this dissertation, thus, Na+, Cl-, NO3
-, 

and SO4
2- ions, are selected for study as four common pollutants found in agricultural tile 

drainage waters in Iowa and the United States. The main objectives of this research can now 

be expressed as follows. 

1.5.1. Develop Precision Laboratory-Based Measurement Techniques for RF and MW 
Dielectric Spectroscopy of Ionic Aqueous Solutions 

The existing studies of dielectric properties of ionic aqueous solutions have been 

limited by the lack of available data in the literature for very low, agriculturally-relevant 

concentration levels. For solutes sodium chloride (NaCl), sodium nitrate (NaNO3), and 

sodium sulphate (Na2SO4), available dielectric spectroscopy data do not span the relevant 

concentration levels which are on the order of millimoles per liter (mmol/L). Laboratory-

based measurement techniques, including test fixtures, instrumentation, temperature control, 

and methodology, therefore, will be developed for measuring the dielectric properties of 
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ionic aqueous solutions of different composition with varying concentrations across radio-

frequency (200 MHz to 1 GHz) and microwave frequency (1 to 20 GHz) regions. 

1.5.2. Collection of RF and MW Dielectric Spectral Data with Low Uncertainty and 
Rigorous Uncertainty Analysis 

Many of the existing data of dielectric spectra of ionic aqueous solutions are subject 

to large uncertainties. Careful assessment of the measurement uncertainties is necessary for 

reliable interpretation of measurement data in general and is particularly important in this 

case concerning the dielectric properties of ionic aqueous solutions at agriculturally-relevant 

low concentrations. The ability to resolve the variations in ε'(f) and ε"(f) that arise for small 

changes in concentration is governed by the requirement that they must exceed the 

experimental uncertainties for ε'(f) and ε"(f). A careful assessment of uncertainty which, to 

the best knowledge, has not been previously applied in the context of RF and MW dielectric 

spectroscopy of ionic aqueous solutions, will be performed, leading to a high quality set of 

data for these solutions with thorough uncertainty analysis. 

1.5.3. Exploit Potential Indicators to Estimate Ion-Specific Concentration 

The dielectric spectra of ionic aqueous sodium chloride (NaCl), sodium nitrate 

(NaNO3), and sodium sulphate (Na2SO4) solutions will be characterized for various ranges of 

environmentally-relevant concentration and temperature. On this basis, methods of extracting 

meaningful indicators from the dielectric spectra through fitting procedures will be 

explained. To my knowledge, no prior investigation has attempted the inverse problem of 

exploiting the dielectric spectral features to estimate the ion-specific concentration of 

aqueous solutions. The following work indeed lays a foundation upon which a prototype real-

time monitoring system can be built to target the most effective indicators. Such a system can 

be, e.g., based on a resonant sensor using an open-ended coaxial transmission line. Interested 
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readers are referred to recent research at Iowa State University [29] for more information 

regarding the details of sensor design using the dielectric spectral features provided by this 

dissertation. 

1.5.4. Develop Concentration- and Temperature-Dependent Models for RF and MW 
Spectral Parameters of Aqueous Ionic Solutions 

A semi-empirical concentration- and temperature-dependent parametric model of 

each dielectric spectral feature accounting for physical chemistry and molecular dynamics of 

the ionic aqueous solution will be developed. Such models can be employed to estimate 

dielectric spectral features, including static permittivity εdc, relaxation time τ, conductivity , 

and complex permittivity for agriculturally-relevant concentrations and temperatures at RF 

and MW frequencies. The methodology taken here can also be generalized for other types of 

ions.  

1.6. Dissertation Organization 

The research presented in the rest of this dissertation starts in Chapter 2 with a 

systematic study of the RF and MW dielectric spectra of aqueous solutions of sodium 

chloride (NaCl), sodium nitrate (NaNO3), and sodium sulphate (Na2SO4) at a constant 

temperature. A semi-empirical model to represent the static permittivity, εdc, of multivalent 

electrolyte systems is introduced. This concentration-dependent model expresses the 

contributions of distinct mechanisms to static permittivity in the low concentration regime. 

In Chapter 3, a thorough assessment of uncertainty in the context of low-

concentration agriculturally-relevant ionic aqueous solutions is presented. Two methods of 

calculating associated uncertainties of the dielectric spectral indicators, covariance matrix 

and Monte Carlo methods, are described. A method of judiciously exploiting the dielectric 
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spectral indicators is proposed, that allows the concentration and type of ions to be uniquely 

determined. 

In Chapter 4, the dielectric spectra of aforementioned ionic aqueous solutions are 

measured and characterized for the extended range of temperatures. Complete analytical and 

semi-empirical models for static permittivity εdc, relaxation time τ, and specific conductivity 

 as a function of concentration and temperature are then derived. A detailed discussion on 

the molecular dynamics of these parameters with respect to temperature is also given.   

In Chapter 5, conclusions drawn from the entire work are summarized and 

recommendations for extended study are provided.  
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CHAPTER 2.    STATIC PERMITTIVITY OF ENVIRONMENTALLY-RELEVANT 
LOW-CONCENTRATION AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, 

SODIUM NITRATE, AND SODIUM SULPHATE 

 To be submitted to Journal of Chemical Physics 

Amin Gorji1, 2, a and Nicola Bowler1, 2, 3, a 

 2.1. Abstract 

In this work, result of a systematic study of the dielectric spectra of aqueous solutions 

of NaCl, NaNO3, and Na2SO4 with environmentally-relevant concentrations (~ mmol/L) are 

presented, for frequencies from 200 MHz up to 20 GHz and at temperature 25.00 ± 0.01 °C. 

The measured spectra were fitted with a Debye relaxation model using a non-linear, 

weighted, least-squares analysis. Conductivity was measured independently, to reduce 

uncertainty in obtaining other parameters by spectral fitting. A Monte Carlo modeling 

method was used to evaluate the associated fitting uncertainties. This process incorporates 

uncertainty contributions of repeated measurements and calibration validation based on a 

priori known reference data. Careful experimentation provided dielectric data of sufficiently 

low uncertainty to enable observation of polarization mechanisms that emerge only in the 

low-concentration regime. The data were fitted by a concentration-dependent parametric 

model that includes terms accounting for internal depolarizing fields and the solvent dilution 

effect (mixture relation), the kinetic depolarization effect, the dielectric saturation effect, and 

the Debye-Falkenhagen effect that accounts for the contribution of ionic atmosphere 

polarization. It has been shown here that, in NaCl and NaNO3 solutions at sufficiently low 

concentrations, the static permittivity increases due to the Debye-Falkenhagen effect. It has 
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also been shown that, to calculate the number of irrotationally bound water molecules ZIB, the 

measured static permittivity values should be corrected to account for the contributions of 

kinetic depolarization and Debye-Falkenhagen effects. Otherwise, unrealistic values of ZIB 

are obtained. An explanation for the different strengths of the Debye-Falkenhagen effect 

observed for the different electrolyte solutions, essentially due to the electrophoretic effect 

and coordination number, is also presented. 

2.2. Introduction 

Excessive amounts of unwanted chemicals and ions flowing into water sources are 

concerning, for environmental and human-health related reasons. Electrolyte solutions of 

nitrate (NO3
-), chloride (Cl-), and sulfate (SO4

2-) ions in water are among the most common 

pollutants [1] that can cause serious environmental and human health problems. 

Understanding the dielectric properties of such electrolytes is of considerable interest, 

providing information about molecular (polarization) and ionic (charge-transport) dynamics 

[2]. Dielectric spectroscopy (DS), which monitors the response of a sample, i.e., its complex 

relative permittivity ε(f) = ε'(f) - jε"(f), to an applied time-harmonic electric field oscillating 

with frequency f is a powerful technique for characterizing unique properties of the nature 

and dynamics of electrolyte solutions [3]. At sufficiently low frequency, DS detects all 

mechanisms that contribute to the polarization of the sample [4]. As frequency increases, 

relaxation or resonance events take place at their characteristic frequencies. At frequencies 

higher than those characteristic frequencies, the contribution of the particular polarization 

mechanism associated with that relaxation or resonance, to the overall polarization of the 

sample, is lost. Real relative permittivity ε'(f) indicates to what extent electrical energy may 

be stored in the material, while imaginary relative permittivity ε"(f) indicates the degree of 
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dissipation of electrical energy (dielectric loss) in the sample, whether by conduction or 

polarization loss.  

The dielectric properties of various moderate- and high-concentration solutions of 

mono/bi-valent nitrate, chloride, and sulfate-based ions dissolved in water have been 

characterized in prior work [5-7]. Table 2.1 summarizes results of most recent dielectric 

studies of sodium-based nitrate, chloride, and sulfate ions. Of note, the dielectric properties 

of NaNO3(aq) reported by Lileev et al. [8] are of very high concentration samples c ~ 0.52 to 

8.54 mol/L over five discrete frequencies between 7 to 25 GHz and different temperatures 

from 10 °C to 40 °C. Wachter et al. [9], however, covered a broad frequency range up to 89 

GHz within concentration range c ~ 0.05 to 1.5 mol/L at T = 25 °C. Most of the previous 

studies, however, did not consider environmentally-relevant concentration levels of 

NaCl(aq), NaNO3(aq), and Na2SO4(aq) which are on the order of millimoles per liter. 

Conclusions drawn from previous studies on moderate- and high-concentration solutions do 

not provide a picture of the dielectric properties in the low concentration regime. A need for 

dielectric data for low concentrations of these ions has arisen in the context of a need for 

real-time monitoring of contaminant ions in water sources [10]. In addition, the data obtained  

Table  2.1     A summary of most recent previous studies of dielectric properties for aqueous 
(aq) solutions of NaCl, NaNO3, and Na2SO4. The table summarizes the studied range of 

concentration c, frequency f, and temperature T. 

Reference Sample c (mol/L) f  (GHz) T (°C) 
Nörtemann et al. [11] NaCl(aq) 0.05-0.6 0.02-40 20 
Buchner et al. [12] NaCl(aq) 0.1-5 0.2-20 5, 20, 25, 35 
Levy et al. [13] NaCl(aq) 0.1-1 0.5-50 25 
Lileev et al. [8] NaNO3(aq) 0.52-8.54 7-25 a 10, 15, 25, 35, 40 
Wachter et al. [9] NaNO3(aq) 0.05-1.5 0.2-89 25 
Barthel et al. [14] Na2SO4(aq) 0.1-1 0.95-89 25 
Buchner et al. [15] Na2SO4(aq) 0.025-1.6 0.95-89 25 

a Measured at five discrete frequencies 
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for low concentrations should be of higher accuracy than is currently available in literature 

because the small variations in ε' and ε" in low concentration solutions may otherwise be 

concealed by the experimental uncertainties of ε' and ε".  

In this work, the dielectric properties of environmentally-relevant, low-concentration, 

aqueous solutions of NaCl, NaNO3, and Na2SO4 are characterized in a well-controlled 

laboratory experiment. In Section 2.3, the details of the experimental setup to perform 

broadband dielectric spectroscopy over the frequency range 200 MHz to 20 GHz and to 

measure specific conductivity are presented. Methods of extracting meaningful permittivity 

parameters from the dielectric spectra are also presented in Section 2.3, along with a 

summary of Monte Carlo modeling employed to evaluate the associated uncertainties. This 

approach to uncertainty analysis which, to the knowledge of authors, has not been previously 

applied in the context of electrolyte solutions, enables us to deduce possible mechanisms that 

emerge in the dielectric properties of the electrolyte solutions at low concentrations. In 

Section 2.4, a semi-empirical model to represent the static permittivity, εdc, of multivalent 

electrolyte systems is introduced. This concentration-dependent model expresses the 

contributions of distinct mechanisms to static permittivity in the low concentration regime. 

Results of extracted permittivity parameters and their associated uncertainties are presented 

in Section 2.5. Section 2.6 is devoted to discussion, and the chapter is drawn to conclusion in 

Section 2.7. 

2.3. Experimental Method 

2.3.1. Apparatus and Sample Preparation 

Dielectric property measurements were made with a Speag open-ended coaxial 

DAK3.5 Dielectric Probe Kit (200 MHz to 20 GHz recommended bandwidth) and an Anritsu 

37347C Vector Network Analyzer (40 MHz to 20 GHz nominal bandwidth) whose drivers 
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were specially programmed for compatibility with the DAK probe. The DAK software 

provided with the probe kit was used to calculate the relative permittivity ε' and ε" of the 

sample from the complex reflection coefficient (S11) measured at the interface between the 

immersed coaxial probe and the liquid sample. The system was calibrated using three 

standards: a shorting block, air, and deionized water at 25 °C. For each sample, the frequency 

was swept and recorded ten times at 100 points between 200 MHz and 20 GHz with equal 

logarithmic frequency steps. Instead of obtaining the conductivity σ as an adjustable 

parameter in the fitting procedure, it was measured separately using a Mettler Toledo 

Seven2GoTM Conductivity meter with InLab720 probe (operating range 0.1 to 500 μS/cm 

with relative uncertainty ± 0.5 %), to reduce uncertainty in obtaining other dielectric 

parameters by spectral fitting (discussed in Section 2.3.3). The conductivity probe was 

calibrated using a Mettler Toledo 84 μS/cm standard potassium chloride solution at 25 °C. 

The sample beaker was placed in a temperature-controlled Anova R10 Refrigerated 

and Heating Circulator, stable to within ± 0.01 °C, and the temperature held at 25 °C ± 0.01 

°C during this experiment. Dowtherm SR-1 Ethylene Glycol oil (18.1 vol. %) was used as 

the bath fluid in order to minimize the influence of ambient temperature fluctuations. It was 

observed that the temperature fluctuation can significantly affect the quality of the measured 

dielectric spectra and mask the concentration/ion-dependent responses particularly for low 

ion concentration. Thus, an electric stirrer was immersed in the sample beaker and the sample 

liquid stirred continuously but gently, avoiding turbulence (bubbles), to mitigate against 

temperature gradients and promote a uniform temperature through the entire sample. 

To perform the experiments, three sets of environmentally-relevant electrolyte 

solutions were prepared and 14 concentrations c of each (including de-ionized water as zero 
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concentration) were tested: (i) aqueous sodium chloride (NaCl) with concentration ranging 

from c = 0 to 11.26 mmol/L, (ii) aqueous sodium nitrate (NaNO3) with c = 0 to 17.83 

mmol/L, (iii) aqueous sodium sulfate (Na2SO4) with c = 0 to 12.45 mmol/L. These ranges, 

despite being different, correspond to 0 to 400 mg/L concentration of sodium chloride as 

chloride (NaCl-Cl), sodium nitrate as nitrogen (NaNO3-N), and sodium sulfate as sulfur 

(Na2SO4-S), which is the commonly represented unit in agricultural societies. The samples 

were tested from lower to higher concentrations by successively titrating (± 0.05 ml) the 

required amount of each stock electrolyte into a specified starting volume of deionized water. 

2.3.2. Data Analysis 

Combining the frequency dependence of polarization ε'(f) and energy dissipation 

ε"(f) of an electrolyte solution in response to an applied electric field, the total complex 

relative permittivity εT(f) can be written 
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  (2.1) 

where the energy dissipation component ε"(f) is composed of dipolar loss εd"(f) and specific 

conductivity σ (dc conductivity) terms. The measured dielectric spectra (total complex 

relative permittivity) for three examples of NaCl, NaNO3, and Na2SO4 with approximately 

the same concentration, c ~ 7 mmol/L, are presented in Figure 2.1. The loss spectra "(f) are 

also decomposed into the contributions from the conductivity term σ/2πfε0, where σ is the 

specific conductivity, and dipolar loss εd"(f). 

The fitting of dielectric spectra requires care, especially for low concentrations of 

solute for which the dielectric spectrum varies only slightly from that of pure water. By 

subtracting the specific conductivity contribution from ε"(f) to obtain the dipolar loss only  
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Figure  2.1    Dielectric dispersion ε'(f) (a) and loss ε"(f) (b) spectra of aqueous solutions of 
NaCl with c = 7.052 mmol/L; NaNO3 with c = 7.139 mmol/L; and Na2SO4 with c = 7.797 

mmol/L at T = 25 °C. The symbols represent the measured permittivity data. The lines 
represent the fitted curves (single Debye relaxation model). The contributions due to the 

conductivity term (σ/2πfε0) and the dipolar relaxation process εd"(f) are shown separately in 
the inset of (b). 

(a) 

(b) 
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εd"(f), and within the frequency range under consideration, the corrected complex relative 

permittivity εc(f) = ε'(f)-jεd" (f) can be approximated by a single-term Debye relaxation model 

as  
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where εdc is the static permittivity, ε∞ is the permittivity at a frequency well above that of the 

relaxation frequency fr, and τ = 1/(2πfr) is the relaxation time. The reason for correcting for 

the specific conductivity is to subtract the ionic migration (i.e. conductivity) contribution 

from ε"(f) in order to deal separately with dipolar polarizations represented by εd"(f). Among 

other relaxation models [16], the dielectric spectra of the present electrolyte solutions can be 

best described by a single-term Debye relaxation model in the low concentration range (~ 

mmol/L). In principle, ε∞ is identified as the plateau reached by ε'(f) when all polarization 

contributions associated with inter-molecular dynamics are no longer effective [7]. Thus, ε∞ 

reflects only contributions from intra-molecular polarizability that could be obtained from 

dielectric spectroscopy in the terahertz region [17]. Since this is far above our upper limit of 

measured frequency, ε∞ was treated as an additional fitting parameter in (2.2). This treatment 

results in slightly increased values of the reduced variance of the fit, s2, but also produces a 

smoother progression of the fitting parameters as a function of concentration. An alternative 

approach in which the value of ε∞ is fixed during the fitting procedure, depending on 

particular scenarios, has also been reported in the literature [11, 12].  

A simultaneous, non-linear, weighted, unconstrained, least-squares analysis to 

minimize the residuals 2 was performed, based on the Gauss-Marquardt algorithm [18]: 
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where fi (i = 1, …, n) denotes each of n frequencies at which permittivity is measured; m is 

the number of adjustable parameters of the Debye relaxation model, and wi' = 1/δε'(fi) and 

wi" = 1/δεd"(fi) are the weighting factors which are inversely proportional to the standard 

deviations of ten recorded spectra of ε'(f) and εd"(f). The uncertainty of the fitting parameters 

u(εdc), u(τ), and u(ε∞), which returned the 68% confidence interval, was also calculated via 

Monte Carlo (MC) modeling described in the following section. 

2.3.3. Uncertainty Analysis 

A careful analysis of the uncertainty is necessary to deduce reliable interpretations of 

the dielectric properties of electrolyte solutions at low concentrations. Currently, an 

instrument uncertainty of ~ 1-3 % in ε' and ~ 2-4 % in ε" is common at frequencies below 

100 GHz and they may easily reach ~ 10 % for both quantities in the THz region [19]. The 

resolution of small variations in ε'(fi) and ε"(fi) in low concentration solutions is limited by 

the requirement that they must at least exceed the experimental uncertainties u'(fi) and u"(fi). 

In addition, as the number of parameters in the fitting equation increases (equivalent to 

reduced degrees of freedom), the associated uncertainty for each fitting parameter will 

subsequently increase [20]. One way that the latter difficulty was addressed was by 

measuring the conductivity independently at high-precision and subtracting the relevant 

contribution, i.e., σ/2πfiε0 from the experimentally accessible ε"(fi) to obtain εd"(fi). By 

treating εd"(fi) rather than ε"(fi), the number of fitting parameters was reduced and the 

associated uncertainty for each fitting parameter was also reduced. 

In this work, the combined standard uncertainties of the measured dielectric spectra, 

uc'(fi)  and uc"(fi), were calculated in accordance with the established “Guide to the Expression 
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of Uncertainty in Measurement (GUM)” guideline [21]. As listed in Table 2.2, the individual 

standard uncertainties include contributions from 10 recorded spectra of repeatable 

measurements, calibration validation through measurement on a reference sample [22], and 

uncertainties associated with the reference data. The calibration validation was performed by 

measuring the complex permittivity of methanol CH3OH at 25 °C. A hybrid set of reference 

data for methanol was created by combining the permittivity data reported by Gregory et al. 

[23] for frequency range 200 MHz to 10 GHz with that presented by Sato et al. [24] for 10 to 

20 GHz. While the former incorporates the first relaxation of methanol, which occurs at 3 

GHz, the latter covers the second relaxation which occurs at around 20 GHz at 25 °C. The 

combined standard uncertainties u'(fi) and u"(fi), associated with measured ε'(fi) and εd"(fi) 

values at each frequency, are the root sum of squares (RSSu) of individual standard 

uncertainties, as attained in Table 2.2. The combined standard uncertainties provide a level of 

confidence of approximately 68 %. In order to get a rough single-number estimate of the  

Table  2.2     Contributions of uncertainty components (real and imaginary parts) over the 
measured frequency range from 200 MHz to 20 GHz. The method and analysis were taken 

from GUM guideline [21]. Type A evaluation of uncertainty is based on statistical analysis of 
series of observations whereas Type B evaluation of uncertainty is relied on scientific 

judgement of any other information other than Type A. 

Source of  
uncertainty 

Type of 
uncertainty 

Probability 
distribution 

Standard 
uncertainty (%) 

Repeatability a A Normal u1'(fi), u1"(fi) 
Uncertainty of reference data b, c B Normal u2'(fi), u2"(fi) 
Deviation from reference data d B Normal δ'(fi), δ"(fi) 

Combined standard uncertainty   uc'(fi)= [u1'(fi)2 + u2'(fi)2 + δ'(fi)2]1/2 

uc"(fi)= [u1"(fi)2 + u2"(fi)2 + δ"(fi)2]1/2 
a Standard deviation of the mean (SDM) calculated from 10 recorded spectra of every 

test sample 
b Gregory et al. [23]: combined “Best-fit” and temperature uncertainties  
c Sato et al. [24]: no associated uncertainty was reported 
d A set of permittivity data for methanol obtained by combining that of Gregory et al. 

[23] (f < 10 GHz) and Sato et al. [24] (f > 10 GHz) 
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overall uncertainty associated with ε' and ε" presented in this work, the calculated combined 

standard uncertainties at each frequency were averaged over the entire frequency (200 MHz 

to 20 GHz) to get u̅c' = uc'(fi)/n = 0.98 % and u̅c" = uc"(fi)/n = 1.46 %. These values 

demonstrate smaller uncertainties compared to common uncertainty ranges mentioned earlier 

(1-3 % in ε' and 2-4 % in ε") which is an improvement toward more precise values for the 

measured dielectric spectra. 

In order to calculate the standard uncertainties associated with the fitting parameters, 

i.e., u(εdc), u(ε∞), and u(τ), we have chosen a Monte Carlo (MC) modeling technique based 

on the approach applied by Gregory et al. [25]. The MC modeling is performed according to 

the following procedure: 

Step 1: Normally-distributed errors ε' and ε"d are generated at each frequency (ε' and ε"d 

can be positive or negative). The errors are sampled from a normal population with zero 

mean and variances equal to uc'(fi) and uc"(fi). These values are generated independently at 

every measured frequency to simulate random noise. 

Step 2: The MC modeling requires a large number of trial datasets to be constructed which 

are representative of the expected statistical variations of the measured data. Therefore, 104 

trial permittivity data sets are created at each frequency point ε'Trial = ε' + ε' and ε"d Trial = ε"d + 

ε"d. 

Step 3: The Debye fitting procedure, according to (2.3), is performed on each trial 

permittivity spectrum to extract the trial fitting parameters. The standard deviations of 104 

trial fitting parameters are taken to be their associated standard uncertainties, u(εdc), u(ε∞), 

and u(τ). The reported uncertainty is based on a standard uncertainty multiplied by a 

coverage factor k = 1, providing a level of confidence of approximately 68 %. 
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2.4. Modeling Static Permittivity 

The static permittivity εdc gives insight into possible polarization mechanisms present 

at the molecular level of electrolyte solutions. At an ideal zero frequency in which the 

applied electric field is constant, besides the thermal agitations of molecules, all dipolar 

moments in the solution tend to align with the direction of the field, thus contributing to the 

total polarization ε'(f = 0) = εdc. At zero concentration, i.e., for deionized water the value 

εdc(c = 0) = ε0dc can be attributed to the total number of water molecules that could align with 

the applied field. Water molecules, due to the electric charge distribution of their electronic 

orbitals, form an almost tetrahedrally structured hydrogen-bond (H-bond) network [19] or are 

‘free’, i.e., are not H-bonded. The ensemble of water molecules aligned with the applied field 

are thus either H-bonded water molecules or free water molecules. Buchner et al. [26] 

demonstrated experimentally the existence of a dominant relaxation process in water 

centered on ~ 18 GHz at T = 25 °C, which is generally attributed to the kinetics of H-bonded 

(bulk) water molecules, and a weaker high-frequency relaxation process at around ~ 120 

GHz due to rotational diffusion of  free (single) water molecules. Adding ionic solute to 

water, to form a solution, the behavior of εdc(c) depends on the contribution of different 

mechanisms emerging with respect to the characteristics of the particular ions, including 

solute-solvent, solute-solute, and solvent-solvent interactions. Another mechanism 

observable at low concentrations of ionic solute is known as the Debye-Falkenhagen effect 

[27], which is an induced polarization due to charge cloud separations without any molecular 

association involved in the process [28]. We seek concentration-dependent parametric model 

to express the behavior of static permittivity over a given concentration range. It is common 

practice to construct the model by summing contributions of the distinct mechanisms that 
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contribute to static permittivity. These include terms accounting for solvent dilution and 

internal depolarizing fields, kinetic depolarization effect, dielectric saturation effect, and the 

Debye-Falkenhagen effect that accounts for the contribution of ionic atmosphere 

polarization. These contributions are considered in turn in each of the following Sections 

2.4.1 through 2.4.4 after which the full model for εdc(c) is presented in Section 2.4.5. 

2.4.1. Dilution and Internal Depolarizing Field 

In order for solute particles to dissolve in water, the positive (cation) and negative 

(anion) ions must break free from the crystal-lattice structure of the solid. When the ions 

dissolve in solution, they are surrounded by water molecules. This indeed yields to reduction 

(dilution) of free and H-bonded water molecules that could otherwise have contributed to the 

total polarization of the solution. The water molecules form layers of solvation around the 

ion. Friedman [29] proposed a classification of solvation models into three groups: 

Hamiltonian, continuous, and chemical. Due to complexity of solutions of the Hamiltonian 

model and limitations of the continuous model, the chemical models are more extensively 

used in dielectric studies [30]. In the chemical model, the volume around an ion is divided 

into two regions. In the exterior region the solvent molecules are treated as pure solution with 

zero ion concentration, while in the interior region they are affected by the presence of ions. 

In this regard, the early attempts to develop a model of the quantitative dielectric decrement 

of water due to dissolved ions were made by Sack [31], Ritson-Hasted [32], and Glueckauf 

[33] where the static permittivity of the solution was found to decrease linearly with ion 

concentration. In later theories, Pottel’s ellipsoidal model [30] which is based on Onsager’s 

spherical model [34] postulates an ellipsoidal exclusion zone containing hydration water 

molecules (water molecules immediately adjacent to a solute particle) together with the 

solute particle. This exclusion zone is surrounded by a homogeneous host medium with 
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permittivity equal to that of pure water. An additional internal depolarizing field [35], due to 

electronic polarization of the ion (εe ~ 2) is also introduced inside the ellipsoidal zone. The 

dilution of free and H-bonded water molecules due to solvation, along with the internal 

depolarizing fields makes the static permittivity of the solution (effective permittivity) 

decrease compared to static permittivity of pure water. Although a rigorous theoretical 

treatment of these mechanisms is not possible, a multitude of mixture relations (effective 

medium approximations) exist. For ease of calculation the Maxwell-Wagner relation [36] is 

employed in this work. The Maxwell-Wagner relation assumes, however, that the 

permittivity in the direct neighborhood of the exclusion zone equals that of the pure solvent. 

In other words, it ignores the long-range interactions between the solute particles and those 

water molecules outside the solvation layers that are weakly affected by the local fields of the 

ion charges. For binary mixtures of non-polar solute particles of permittivity εe, volume 

fraction v(c) (= c[mol/L]M[g/mol]/ρ[g/L]), and a background host medium of permittivity 

ε0dc, the static permittivity decrement δMW(c) according to the Maxwell-Wagner relation is 
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where εe = 2 is a reasonable approximation in the case of a nonpolar spherical solute [36]. 

Other mixture relations including the Bruggeman relation and the Looyenga relation are 

formulated in [37] but, the same underlying assumptions hold for them. 

2.4.2. Kinetic Depolarization 

The measured static permittivity of electrolyte solutions clearly falls below the 

predictions of mixture relations, because, in an electrolyte solution, the migration of ions 

under the influence of an external electric field reduces the polarizability of the solvent [38]. 
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In the theoretical framework of the Hubbard-Onsager model [38], a symmetrically charged 

impenetrable sphere (the ion) is moving in a viscous, incompressible, polarizable fluid 

continuum (the solvent) [39]. As an ion migrates and sets up a non-uniform flow, according 

to the laws of hydrodynamics, the surrounding water molecules in the outer regions of the 

solvation layer are perturbed and tend to rotate in the direction opposite to that promoted by 

the external field. This additional polarization deficiency is known as kinetic depolarization 

δKD(c) and is proportional to the specific conductivity σ(c) of the solution and the relaxation 

time τs of the solvent. In the case of electrolyte solutions where perfect slip (p = 2/3) 

boundary conditions between the ion surface and solvent continuum are assumed [12], δKD(c) 

is given by 

( ) ( ) ( )KD c c c                                                       (2.5) 

where ξ(c) is the Hubbard-Onsager coefficient 

0

0
0

( )( ) dc
s

dc
c p c  

 


                                               (2.6) 

 The identity ∞(c) = ∞(c = 0) is assumed throughout this work. The kinetic depolarization 

mechanism adds to the decrements due to dilution of free and H-bonded water molecules and 

the internal depolarizing fields. Recently, terahertz time-domain spectroscopy data also 

confirmed that hydrodynamic motions of water molecules resulting from movement of ions 

contribute significantly to polarization deficiency [40]. 

Considering a set of assumptions regarding the system of non-ideal electrolyte 

solutions, Debye, Huckel, and Onsager (DHO) derived a fundamental treatment to consider 

the total effects of non-ideality (friction, electrophoretic, and asymmetric relaxation effects) 

on the ionic conductivity. The complete derivation of DHO theory has been extensively 
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discussed by Wright [41]. In order to calculate the specific conductivity of a general 

multivalent electrolyte system AxBy composed of Ay+ and Bx- ion species with electron valency 

z1 = y and z2 = -x for cation and anion, respectively, and at temperature T in kelvin (K), we 

start our analysis by defining the concentration-independent inverse Debye length κ0 (m-1) as 

 2 2
0 1 22 10

2

0

A

Bdck
e N

z zz z
T


 

                                            (2.7) 

where e = 1.6010-19 C is the elementary charge, NA = 6.021023 mol-1 is Avogadro’s 

number, ε0 = 8.8510-12 F/m is the free space permittivity, and  kB =  1.3810-23 J/K  is the 

Boltzmann constant. After carefully performing a few mathematical steps, the electrophoretic 

coefficient, a (m3.5S/mol1.5), and the asymmetric relaxation coefficient, b (m3.5S/mol1.5), can 

be written as 

0
2 2
1 2

2 1
0

6 6
z Fe z Fe

a z z
 

 
                                               (2.8) 
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where F = 96,485.33 C/mol is the Faraday constant,  (kg m-1s-1) is the dynamic viscosity of 

the pure water, and 1 (m2S/mol) and 2 (m2S/mol) are the ionic conductivities of cation and 

anion, respectively, at infinite dilution. The infinite molar conductivity of the whole system 

at infinite dilution, ∞ (m2S/mol), is then 

1 1 22z z                                                              (2.10) 

The molar conductivity of the whole system, (c) (m2S/mol), can be calculated as a function 

of solute concentration c (mol/L) according to 
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3( 0) 1Bc c                                                  (2.11) 

B a b                                      (2.12) 

where B is the coefficient combining the non-idealities of electrophoretic and relaxation 

effects. Finally, the specific conductivity σ(c) (S/m) of the solution, calculated through 

theoretical formulations directly, can be expressed 

3( ) 10 ( )c c c                                              (2.13) 

 In cases of low concentration solutions for which concentration is of the order of mmol/L, it 

is more convenient to report the specific conductivity in S/cm. Table 2.3 lists the input 

quantities required to theoretically calculate the specific conductivity and kinetic 

depolarization contribution. 

2.4.3. Dielectric Saturation 

Around the solvation layers of an ion the rotational ability of the electric dipole 

moment of solvent molecules appears to be reduced by proximity to the associated Columbic 

field. If the ion-solvent interactions of water molecules located in the hydration layers of an 

ion are much stronger than the interactions to outer H-bonded water molecules, the water 

Table  2.3     Input quantities required to model the specific conductivity and kinetic 
depolarization contribution to the static permittivity of NaCl, NaNO3, and Na2SO4 at 25 °C 
according to (2.11) and (2.12). For NaCl and NaNO3, z1 = 1 and z2 = -1 whereas for Na2SO4, 
z1 = 1 and z2 = -2.  = 8.934×10-4 (kg m-1 s-1) [42],   = 997.06 (g/L) [42]. Ionic conductivity 

values λ1 and λ2 are taken from [43]. Debye-Falkenhagen (DF) coefficient D is also 
calculated from (2.18) for each electrolyte system. 

ion M 
(gr/mol) 

λ1 
(m2S/mol) 

λ2 
(m2S/mol) 

Λ∞ 

(m2S/mol) 
B 
(m3.5S/mol1.5) 

D  
(m1.5 mol-0.5) 

NaCl 58.4428 50.1×10-4 76.4×10-4 126.5×10-4 1.113×10-4 0.118 
NaNO3 84.9947 50.1×10-4 71.4×10-4 121.5×10-4 1.076×10-4 0.118 
Na2SO4 142.0421 50.1×10-4 160×10-4 260.2×10-4 8.706×10-4 0.405 
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molecules in the hydration layers effectively become immobilized and may not be affected 

by the presence of an external applied field. A resulting polarization deficiency, known as 

dielectric saturation, can be evaluated in terms of the number of irrotational bonded (IB) 

water molecules Z+IB and Z-IB per cation and anion, respectively. For a general multivalent 

electrolyte system AxBy, the water molecules adjacent to cation and anion, numbered ZIB = 

xZ+IB + yZ-IB, do not contribute to the static permittivity. The ZIB values of monovalent ions 

reported in the literature [19] indicate that cations, which have smaller ionic radius than 

anions relatively, are more extensively surrounded by water molecules than anions, with the 

number of water molecules in the solvation layers decreasing with increasing ionic radius 

[37]. In addition, more highly charged cations and anions (multivalent ions) have greater ZIB 

values than monovalent ions, suggesting the existence of irrotationally bound water 

molecules beyond the first solvation layer. Recent computer simulations [44, 45] and 

dielectric spectroscopy studies [19] of aqueous solutions also concluded that the ions 

influence the water molecules in the first hydration layer as well as the H-bonded water 

molecules nearby. Noting that effects of ionic radius, electron valency, and long-range 

interactions are not accounted for in the mixture relation (2.4), the contribution of dielectric 

saturation to a semi-empirical model describing static permittivity must be added separately. 

Although there have been yet no theoretical approaches to directly calculate ZIB from the 

characteristics of solute particles, a comparison of the apparent solvent concentration csap(c) 

calculated from measured εdc(c), with the analytical solvent concentration cs0 (= 

ρwater[gr/L]/Mwater[gr/mol]) at zero solute concentration, leads to the calculation of ZIB(c) as 

[15] 

0 ( )( )
ap

s
B

s
I

cZ c
c

cc 
                                         (2.14) 
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In order to compare ZIB values of the present samples in this work with the literature values 

used in Section 2.6, scaled Cavell equation [15, 46] is used for calculation of csap(c) as 

follows 

0 (2 ) 1( ) ( ) ( )
( )

ap dc
s cv dCa

dc

ccc F c c
c


 

 


                                     (2.15) 
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 
                                           (2.16) 

where ε̅dc(c) = εdc(c) + δKD(c) is the static permittivity corrected for kinetic depolarization to 

prevent unreasonably large values of ZIB for almost all electrolyte systems [47]. ε̅dc(c), thus, 

is taking into account solvent-affiliated contributions due to dilution and internal 

depolarizing field as well as dielectric saturation. The field factor fi(c) = fi(0) and Ai = 1/3 for 

spherical reaction field are assumed in the original equation [15]. Several other approaches 

including Kirkwood-Frohlich (KF) equation [12] and Bruggeman [11] relation  have also 

been employed for the calculation of csap(c). A direct comparison of ZIB values from different 

models, however, requires careful attention since for a given electrolyte system the ZIB value 

becomes model dependent [14] and thus no particular model is yet preferred. In order to form 

a semi-empirical model of the static permittivity with no a priori information of ZIB values 

for the calculation of polarization deficiency due to dielectric saturation mechanism δsat(c), 

we treat it as a linear function of solute concentration 

 ( )sat satc c                                                     (2.17) 

where γsat is an adjustable parameter obtained through a data-fitting procedure, for each 

electrolyte systems. 
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2.4.4. Ionic Atmosphere Polarization 

The concept of ionic atmosphere, as first dealt by the model presented by Debye and 

Huckel in 1927 for the conductivity of strong electrolyte systems, can be defined in terms of 

a chosen reference ion, with all the other ions including cations and anions distributed around 

it, making up the ionic atmosphere. In the absence of the external electric field the ionic 

atmosphere is symmetric with the charge distribution tending to zero with distance from the 

reference ion [41]. If the reference ion is a cation moving under the influence of an external 

electric field, however, it and the cations of the ionic atmosphere will move in the direction 

of the applied field, while the anions will move in the opposite direction. This movement 

therefore causes a deficit of negative charges in front of the moving reference cation and an 

excess of negative charge behind it, causing asymmetry in the ionic atmosphere around the 

moving reference ion. Under alternating electric field development of the asymmetric ionic 

atmosphere depends on the frequency, in particular on whether there is enough time available 

to reach the asymmetric state. The frequency-dependent asymmetric ionic atmosphere, as 

first theoretically predicted by Debye and Falkenhagen [27, 48], introduces additional 

polarization of quasi-elastic origin to the system, without any dipolar species resulting from 

ion association and chemical reaction (different from ion-pairs). The Debye-Falkenhagen 

(DF) effect suggests a rise in static permittivity above that of pure water at very low 

concentrations.  For a typical ~ 10 mmol/L solution of a 1:1 electrolyte system, the 

relaxation of the asymmetric ionic atmosphere is predicted to occur below 100 MHz [49, 50]. 

The DF effect is, alternatively, recognized as increasing ionic conductivity at around the 

frequency corresponding to the relaxation of the asymmetric ionic atmosphere [50, 51]. Prior 

published works do not unambiguously establish any positive contribution of the DF effect to 
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static permittivity. This is mainly because, as frequency decreases, the loss tangent ( 

σ/2πf0) is so great and the electrode effects so marked that the required accuracy is not 

available [52]. Indeed, prior dilute solution measurements have shown the static permittivity 

to be smaller than that of pure water [53, 54] and some have shown the opposite. Van Beek et 

al. [49] were first to experimentally reported the increment in static permittivity. For most 

aqueous solutions investigated in their work, including alkali chlorides in water, static 

permittivity shows an initial increase above the value of the pure solvent with the values up 

to concentrations of 25 mmol/L. Further initial evidence of the existence of DF effect in 

NaCl aqueous solutions was implicitly mentioned by Winsor et al. [55] and Nortemann et al. 

[11]. 

The static permittivity increment based on speculative estimation by Debye and 

Falkenhagen, which is equal to Dc0.5 (c [mol.m-3]) where D (m1.5 mol-0.5) is the Debye-

Falkenhagen (DF) coefficient [48, 49]  

 

2 1.5
01 2

20
0

.524 1B

e qz z
D

Tk q







                                            (2.18) 

and q is  

 
 

  
1 2 1 2

2 11 2 1 2

z z
q

z z z z
 
 



 

                                       (2.19) 

gives relatively larger effects at low concentrations [55]. As a result, we add an adjustable 

parameter γDF1 to correct for DF coefficient during the fitting procedure. Moreover, as the DF 

effect was originally derived for dilute range of concentration [49] and will be amplified as 

concentration increases, a decaying factor (c) should be introduced to correct for the 

theoretical expression as concentration increases. The decaying function, as will be shown in 

Section 2.6, is also necessary to be included to obtain reasonable values for irrotational 
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bonded (IB) water molecules ZIB. In this work, an exponential-type decaying function (c), 

through the adjustable parameter γDF2, is established. The net static permittivity increment 

due to DF effect δDF(c) can then be written as  

1

3( ) 10  ( )DFDF Dc c c                                             (2.20) 

 
2

( ) exp( )DFc c                                                   (2.21) 

The rationale behind an exponential-type decaying factor comes from the fact that it provides 

finer goodness of fit between the measured data and the proposed model of the static 

permittivity in the given concentration range. 

2.4.5. Complete Model of Static Permittivity 

According to the discussions made through Sections 2.4.1 to 2.4.4, the semi-empirical 

model to represent the static permittivity of multivalent electrolyte systems in low 

concentration regime can be given as a combination of terms from (2.4), (2.5), (2.17), and 

(2.20) 
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where δMW(c) and δKD(c) are directly calculated through (2.4)-(2.13), D is calculated from 

(2.18) and is given in Table 2.3, and δDF(c) along with δsat(c) are calculated empirically 

through the adjustable parameters γDF1, γDF2, and γsat by careful execution of the data-fitting 

procedure. A hypothetical graph representing the behavior of static permittivity (2.22) with 

respect to concentration is shown in Figure 2.2. 



www.manaraa.com

38 

 

Figure  2.2    Hypothetical graph representing the dependence of static permittivity (2.22) on 
concentration. The effects of Debye-Falkenhagen effect, δDF, dilution and internal 

depolarizing field, δMW, dielectric saturation, δsat, kinetic depolarization, δKD, and ion-pair, 
δIP, are shown in the figure. 

The effects discussed in Sections 2.4.1 to 2.4.4 have each been treated separately, 

effectively ignoring possible inter-relations between each other. Thus comparison with 

experimental results needs stringent attention. It is also worth mentioning that in highly 

concentrated solutions the ionic contributions, based on Bjerrum’s concept of ion-pairs, 

generally increases. In the case of highly concentrated solutions, it may be necessary to add 

the incremental effect of ion-pairs (IP) δIP(c) to the model of static permittivity represented in 

(2.22). Analysis of dielectric spectra proves to be more complicated, but manageable, if ion-

pairs and complex aggregates also contribute to the complex permittivity [56]. In the 

concentration ranges for the electrolyte systems studied in this work, however, no evidence 

of creation of strong ion-pairs has been observed. 

2.5. Results 

The fitted Debye relaxation parameters, specific conductivities, and reduced variance 

of the fits of the data to (2.22), along with the associated uncertainties for each of NaCl, 

NaNO3, and Na2SO4 electrolyte systems at T = 25 °C, are listed in Table 2.4. The specific 
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Table  2.4     Parameters of single-term Debye model (εdc, τ, and ε∞), specific conductivity 
(σ), and reduced variance of the fit (s2) to (2.22) for various concentrations (c) of aqueous 
NaCl, NaNO3, and Na2SO4 solutions at T = 25 °C. The specific conductivity was measured 
directly up to 500 S/cm. For concentrations corresponding to specific conductivity greater 
than 500 S/cm, σ was treated as an additional fitting parameter. The standard uncertainties 

correspond to approximately 68 % confidence interval. 

c (mmol/L) σ (μS/cm) εdc τ (ps) ε∞ s2 
NaCl 

0 8.184 ± 0.040 78.362 ± 0.078 8.275 ± 0.047 5.24 ± 0.16 0.002 
0.294 ± 0.016 35.13 ± 0.18 78.380 ± 0.080 8.260 ± 0.047 5.07 ± 0.17 0.002 
0.585 ± 0.024 69.91 ± 0.35 78.403 ± 0.078 8.254 ± 0.047 4.87 ± 0.16 0.004 
0.873 ± 0.029  105.44 ± 0.52 78.421 ± 0.078 8.192 ± 0.046 4.26 ± 0.15 0.016 
1.159 ± 0.033 138.18 ± 0.70 78.459 ± 0.080 8.175 ± 0.047 4.00 ± 0.16 0.041 
1.722 ± 0.040 207.8 ± 1.0 78.444 ± 0.078 8.181 ± 0.046 4.00 ± 0.16 0.044 
2.276 ± 0.045 273.1 ± 1.4 78.415 ± 0.079 8.172 ± 0.046 3.89 ± 0.16 0.047 
2.820 ± 0.049 345.1 ± 1.7 78.387 ± 0.079 8.126 ± 0.046 3.53 ± 0.16 0.049 
4.244 ± 0.049 517.0 ± 7.6 78.373 ± 0.079 8.129 ± 0.046 3.46 ± 0.16 0.065 
5.653 ± 0.049 675.5 ± 8.4 78.357 ± 0.078 8.081 ± 0.045 3.07 ± 0.15 0.075 
7.045 ± 0.049 838.2 ± 9.1 78.355 ± 0.078 8.104 ± 0.046 3.09 ± 0.15 0.120 
8.462 ± 0.048 977.0 ± 9.4 78.340 ± 0.078 8.080 ± 0.046 2.85 ± 0.15 0.131 
9.853 ± 0.047 1167 ± 10 78.315 ± 0.081 8.061 ± 0.046 2.69 ± 0.17 0.153 

11.259 ± 0.047 1297 ± 10 78.266 ± 0.078 8.058 ± 0.045 2.66 ± 0.15 0.144 
NaNO3 

0 8.331 ± 0.042 78.363 ± 0.079 8.268 ± 0.047 5.19 ± 0.17  0.001 
0.743 ± 0.043 84.77 ± 0.42 78.352 ± 0.077 8.258 ± 0.046 5.10 ± 0.15  0.002 
1.479 ± 0.060 168.50 ± 0.84 78.344 ± 0.076 8.242 ± 0.046 4.96 ± 0.15 0.003 
2.209 ± 0.073 250.5± 1.3 78.341 ± 0.078 8.235 ± 0.047 4.87 ± 0.16 0.005 
2.932 ± 0.083 333.3 ± 1.7 78.325 ± 0.076 8.226 ± 0.046 4.73 ± 0.15 0.005 
3.649 ± 0.092 414.6 ± 2.1 78.310 ± 0.077 8.209 ± 0.046 4.61 ± 0.15 0.006 
4.36 ± 0.10 491.2 ± 2.5 78.292 ± 0.078 8.213 ± 0.047 4.66 ± 0.16 0.007 
5.06 ± 0.11 566.9 ± 8.0 78.289 ± 0.078 8.196 ± 0.046 4.48 ± 0.16 0.011 
5.76 ± 0.11 648.0 ± 8.1 78.275 ± 0.078 8.188 ± 0.046 4.39 ± 0.16 0.014 
6.45 ± 0.12 728.8 ± 8.7 78.263 ± 0.079 8.177 ± 0.047 4.29 ± 0.17 0.018 
7.14 ± 0.13 809.0 ± 9.0 78.270 ± 0.079 8.166 ± 0.046 4.16 ± 0.16 0.023 
10.74 ± 0.13 1200± 10 78.185 ± 0.081 8.162 ± 0.047 4.13 ± 0.17 0.025 
14.31 ± 0.13 1540 ± 13 78.014 ± 0.081 8.163 ± 0.047 4.31 ± 0.18 0.016 
17.83 ± 0.12 1946 ± 13 77.975 ± 0.078 8.156 ± 0.046 4.27 ± 0.16 0.014 

Na2SO4 
0 8.218 ± 0.041 78.362 ± 0.078 8.277 ± 0.047 5.26 ± 0.16 0.002 

0.325 ± 0.019 78.44 ± 0.39 78.351 ± 0.082 8.271 ± 0.048 5.17 ± 0.19 0.002 
0.965 ± 0.032 225.0 ± 1.1 78.322 ± 0.077 8.277 ± 0.046 5.25 ± 0.16 0.003 
1.281 ± 0.036 297.0 ± 1.5 78.316 ± 0.079 8.270 ± 0.047 5.15 ± 0.17 0.002 
1.594 ± 0.040 366.9 ± 1.8  78.305 ± 0.079 8.267 ± 0.047 5.15 ± 0.17 0.003 
2.212 ± 0.047 496.7 ± 7.8 78.272 ± 0.078 8.273 ± 0.047 5.22 ± 0.16 0.003 
2.819 ± 0.052 638.1 ± 8.5 78.240 ± 0.078 8.267 ± 0.047 5.21 ± 0.16 0.003 
3.119 ± 0.054 703.0 ± 8.6 78.221 ± 0.078 8.280 ± 0.047 5.30 ± 0.16 0.003 
4.693 ± 0.054 1038 ± 10 78.167 ± 0.079 8.266 ± 0.047 5.18 ± 0.17 0.003 
6.250 ± 0.054 1320 ± 11 78.119 ± 0.079 8.265 ± 0.047 5.16 ± 0.17 0.005 
7.789 ± 0.054 1596 ± 12 78.052 ± 0.078 8.252 ± 0.047 5.08 ± 0.16 0.005 
9.356 ± 0.053 1904 ± 13 77.998 ± 0.077 8.245 ± 0.047 4.95 ± 0.15 0.007 

10.895 ± 0.052 2163 ± 14 77.930 ± 0.076 8.238 ± 0.046 4.91 ± 0.15 0.010 
12.449 ± 0.051 2394 ± 16 77.832 ± 0.077 8.221 ± 0.046 4.86 ± 0.15 0.022 
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conductivity σ was measured directly using a conductivity meter, as mentioned in Section 

2.3. There were, however, a few concentrations for which σ was higher than the operating 

range of the conductivity meter, i.e., σ was greater than 500 μS/cm. In such cases the specific 

conductivity σ was treated as an additional adjustable parameter meaning that the sum of a 

single-term Debye relaxation model and a conductivity contribution (σ/2πf0) was used to 

analytically represent the measured spectrum. According to Table 2.4, the major relaxation of 

the spectra for all three electrolyte systems occurs at around 18 GHz at T = 25 °C, 

corresponding to cooperative relaxation of the H-bond network of bulk water molecules. The 

minor high-frequency relaxation process (~ 120 GHz), which is due to free water molecules 

is beyond the upper frequency limit of the present work. The relaxation parameters of pure 

water obtained in this work are in a good agreement with the values presented in [13], based 

on a single-term Debye model, reported as ε0dc  = 78.36 ± 0.2, τ  = 8.27 ± 0.05 ps, and ε∞ = 5.2 

± 0.1 at T = 25 °C. The uncertainties evaluated in this work are, however, smaller (Table2.4). 

Although a good quality fit to the measured spectra was achieved for each concentration, it 

should be noted that the reduced variance of the fit, s2 = (εc - εDebye)2/(n-m), increases with 

concentration. 

2.6. Discussion 

2.6.1. Evaluation of Semi-Empirical Model 

In Figure 2.3 the static permittivity (column 3 in Table 2.4) for aqueous solutions of 

NaCl, NaNO3, and Na2SO4 is plotted versus concentration. The fitted static permittivity 

modeled by (2.22) is also shown for each electrolyte system, with parameters given in Table 

2.5. The permittivity of NaCl [11-13], NaNO3 [8, 9], Na2SO4 [14, 15] and indeed most other 

strong electrolytes in water has already been found to follow a decreasing trend with 



www.manaraa.com

41 

concentration for c ≈ 0.5 to 5 mol/L (500 to 5,000 mmol/L). Within the concentration range 

of the present work, however, the static permittivities so obtained show a slight increase with 

concentration for both NaCl and NaNO3, while they show almost linear decrease for Na2SO4. 

The positive contribution to static permittivity in this low concentration regime can be best 

attributed to the creation of ionic atmosphere polarization and the associated Debye-

Falkenhagen (DF) effect, as discussed in Section 2.4. The contribution of the DF effect to the 

static permittivity represented by γDF1 (or γDF1D) behave as NaCl > NaNO3 > Na2SO4. The 

permittivity increment for NaCl is in conformity with the findings of van Beek et al. [49] and 

Winsor et al. [55], although Anderson [52] commented on the possible challenges that might 

in generally question the observation of DF effect through experiments. Static permittivity 

data in low concentration regions, which can potentially manifest the DF effect in NaNO3 and 

Na2SO4, however, have not been yet reported in literature. 

The resulting decrements in measured static permittivity, albeit with an initial 

increase in NaCl and NaNO3 which will be discussed in Section 2.6, of all electrolyte systems 

shown in Figure 2.3 with concentration can be attributed to the sum of contributions from 

dilution and internal depolarizing field, kinetic depolarization, and dielectric saturation, as 

well as the vanishing effect of DF effect through exp(-γDF2c). The dielectric saturation effect, 

represented by γsat follows the trend Na2SO4 > NaNO3 > NaCl. In principle, such a sequence 

is connected to an increase in the number of irrotationally bound water molecules ZIB within 

the concentration range studied. 

Two theoretical decrement terms of static permittivity, 1 and 2, which are 

calculated according to  
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  0
1 ( ) ( )MW KDdc c c      (2.23) 

and 
  0

2 ( ) ( ) ( )satdc MW KDc c c        (2.24) 

are also shown in Figure 2.3 for each electrolyte system. Therein ε0dc is the static permittivity 

of deionized water (Table 2.4), and δMW(c) and δKD(c) are calculated from (2.4) and (2.5), 

respectively. The theoretical calculation of δsat(c), i.e., δsat(c) = ε0dc - ε̅dc(c) - δMW(c), where 

ε̅dc(c) is implicitly calculated from (2.15), requires input values for ZIB. The ZIB values are 

measurable only for the whole system AXBY, so it is necessary to split them into the ionic Z+IB 

and Z-IB values. Cationic irrotationally bound water molecules have Z+IB = 4.2 for Na+ [12], 

and anionic irrotationally bound water molecules have Z-IB  = 0 for Cl- [12] , 0 for NO3
-[19], 

and 10 for SO4
2- [15]. These numbers, however, are obtained from experimental data for 

electrolyte systems with moderate to high concentrations, i.e., 0.5 mol/L < c < 5 mol/L. The 

decrement term 1 accounts for reduction of static permittivity due to dilution and internal 

depolarizing field, and kinetic depolarization, while 2, accounts for contributions of the 

same mechanisms as well as dielectric saturation. 

Ideally, one would expect 2 < 1 as the sum of contributions from dilution and 

internal depolarizing field, kinetic depolarization, and dielectric saturation would be greater 

than the sum of the first two. This, however, is not held for the corresponding calculated 

results for NaCl and NaNO3 (Figures 2.3.a and 2.3.b) within the entire concentration range as 

2 > 1. This observation reflects that there are unrealistic negative values for dielectric 

saturation δsat(c) which are calculated theoretically from ZIB values taken from literature. 

Therefore, it can be inferred that the number of irrotationally bound water molecules ZIB  
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Figure  2.3    Experimental data (open circles) of the static permittivity, εdc, and fitted semi-
empirical model of static permittivity (2.22) (solid line) with parameters listed in Table 2.5, 

of aqueous solutions of (a) NaCl, (b) NaNO3, and (c) Na2SO4 at T = 25 °C. Theoretical 
discernment term 1 (2.23) accounts for the contributions of dilution and kinetic 

depolarization (dash-dot line) and 2 (2.24) accounts for the contributions of dilution, kinetic 
depolarization, and dielectric saturation, where ZIB values are taken from literature [19] and 

are treated as input variables (dashed line). 
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Table  2.5     Concentration, ε0dc, and parameters of semi-empirical static permittivity model 
(2.22) of aqueous NaCl, NaNO3, and Na2SO4 solutions at 25 °C. The sum of squared error 

(SSE) for each fitted curve is also shown. 

 c (mmol/L) ε0
dc γDF1 γDF2 γsat SSE 

NaCl 0-11.26 78.362  0.64 ± 0.02 122 ± 49 0.003 ± 0.003 0.005 
NaNO3 0-17.83 78.358 0.24 ± 0.03 31.3 ± 9.1 9.5 ± 0.4 0.005 
Na2SO4 0-12.45 78.362 0.008 ± 0.003 27 ± 10 11.8 ± 0.5 0.002 

 

reported in literature for either cation Na+ or anions Cl- and NO3
- are underestimated in the 

low concentration regime. For Na2SO4 (Figure 2.3.c), however, as 2 < 1 holds, the same, at 

least comparable, number of ZIB for cation Na+ and anion SO4
2- can be speculated. 

2.6.2. Irrotationally Bound Water Molecules 

The number of irrotationally bound water molecules ZIB for each electrolyte solution 

can be calculated as a function of concentration, through (2.14)-(2.16). An estimate of the ZIB 

values from (2.15) using ε̅dc, the static permittivitiy corrected for kinetic depolarization, has 

given unrealistic negative values for NaCl and NaNO3, as depicted in Figure 2.4. These 

unrealistic values offer support for the veracity of the observed positive contribution of ionic 

atmosphere and DF effect to the static permittivities at low concentrations. Attempting to 

obtain realistic non-negative values for ZIB can be achieved by correcting ε̅dc values in (2.15) 

for DF effect, i.e., ε̅dc(c) = εdc(c) + δKD(c) – δDF(c), where δDF(c) is calculated from (2.20)-

(2.21) and the parameters obtained in Table 2.5. The ZIB values corrected for DF effect are 

also shown in Figure 2.4.  

From the extrapolations of ZIB at c → 0, and by setting Z+IB = 4.5 ± 0.3  for Na+ [12], 

Z-IB values for each electrolyte solution are listed in Table 2.6.  According to Table 2.6, Z-IB 

values corrected only for kinetic depolarization (Z-IB KD) result in negative values for NaCl  
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Figure  2.4    Number of irrotationally bound water molecules, ZIB, of NaCl (circle), NaNO3 
(square), and Na2SO4 (triangle) at 25 °C. ZIB values are corrected for kinetic depolarization 
(hollow symbols), and corrected for kinetic depolarization and Debye-Falkenhagen effect 

(filled symbols). The 68% confidence intervals, representing the uncertainties in deriving ZIB 
values, are also shown (dashed line). Fitted static permittivities (2.22) are used to calculate 

ZIB through (2.14)-(2.16). 

 

Table  2.6     Number of irrotationally bound water molecules per anion, Z-IB, corrected for 
kinetic depolarization (Z-IB KD), and corrected for kinetic depolarization and Debye-

Falkenhagen effect (Z-IB KD+DF). Fitted static permittivities (2.22) are used to calculate ZIB 
through (2.14)-(2.16). Z+IB = 4.2 ± 0.3 for Na+ [12] is assumed for all calculations. The 

coordination number (CN) and Z-IB for each anion according to corresponding reference are 
also given. 

 CN (ref) Z-IB (ref)1 Z-IB KD Z-IB KD+DF 
Cl- 6 [19, 57] 0 ± 0.3 [12] -99.6 ± 0.6 0.5 ± 0.6 
NO3

- 5.9-9 [9, 19] 0 [19]  -14.5 ± 1.2 9.9 ± 1.2 
SO4

2- 7-12 [15, 19] 10 ± 0.7 [15] 7.9 ± 1.0 11.9 ± 0.9 
1 Z-IB values are corrected for kinetic depolarization under slip 

boundary condition. 
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and NaNO3 solutions. The Z-IB values, corrected for both kinetic depolarization and DF effect 

(Z-IB KD+DF), however, result in non-negative and physically realistic values. These values read 

as 0.5 ± 0.6 for Cl- and 11.9 ± 0.9 for SO4
2- and are found to be in a good agreement  with 0 ± 

0.3 for Cl- reported in [12] and 10 ± 0.7 for SO4
2- reported in [15]. Higher values, however, 

are calculated for NO3
- as 9.9 ± 1.2 compared to 0 reported in [19]. Although Z-IB is not 

strictly a coordination number (CN) (total number of water molecules in all solvation layers 

of ion) [7] the level of agreement between coordination number of NO3
-, i.e., 5.9 to 9 [9, 19], 

and number of irrotationally bound water molecules around NO3
-, i.e., 9.9 ± 1.2 (Table 2.6), 

largely reflects the presence of water molecules with reduced but nonzero rotational mobility 

in the structural mismatch region. As pointed out by Frank and Wen [30, 58] there must exist 

a structural mismatch region of water molecules with reduced but non-zero rotational 

mobility beyond the inner solvation layer. At low concentration of NO3
- ions (mmol/L), the 

number of water molecules is much greater than the number of ions (cs0/c ~ thousands), thus, 

those water molecules that could not find an ion to partner with in the inner solvation layer 

remain in the structural mismatch region. Water molecules with reduced but non-zero 

rotational mobility in the structural mismatch region, therefore, lead to an increase in the Z-IB 

value of NO3
- ion.  

Comparing the coordination number of SO4
2-, i.e., 7 to 12 [15, 19], and the number of 

irrotationally bound water molecules around SO4
2-, i.e., 11.9 ± 0.9, implies that in the strong 

Columbic field of bivalent ions more water molecules are irrotationally bound in the first and 

beyond the first solvation layer [15]. Based on the coordination number of Cl-, i.e., 6 [19, 

57], with a broad distribution from 1 to 8 [12], and the number of irrotationally bound water 

molecules around Cl-, i.e., 0.5 ± 0.6, however, no water molecule is found to be bonded 
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beyond the first solvation layer. Indeed, since Z-IB ≠ 0 it offers a fraction number of water 

molecules in the first solvation layer are immobilized within the low concentration range 

studied. The uncertainty associated with the Z-IB value, however, may not allow one to derive 

a firm conclusion. 

2.6.3. Debye-Falkenhagen Effect 

The analysis of DF effect for different electrolyte systems has not been extensively 

covered in literature. Nevertheless, concentration-independent Debye length lκ0 (m) is an 

available parameter that can be employed to justify the strength of DF effect for different 

ions. lκ0 is calculated as [59] 

 
0

0

1l 
                                                             (2.25) 

where κ0 is the concentration-independent inverse Debye length calculated from  (2.7). For 

NaCl and NaNO3 which both have same ionic electron valency z1 = 1, z2 = 1, lκ0 = 9.60 nm, 

and for Na2SO4 with z1 = 1, z2 = 2, lκ0 = 6.07 nm at T = 25 °C. The Debye length, lκ0, can be 

taken as the corresponding length of the induced dipolar moment created by charge cloud 

separation of ionic atmosphere. Therefore, the longer the Debye length, the stronger is the 

induced dipolar moment and thereby the DF effect. As NaCl and NaNO3 possess longer 

Debye length than Na2SO4, according to γDF1 listed in Table 2.5, the positive contribution of 

DF effect follows expectedly the trend NaCl > Na2SO4 and NaNO3 > Na2SO4.  

The strength of DF effect, however, should not be solely dependent on Debye length 

as we should be able to justify the difference in DF effect of NaCl > NaNO3 with the same 

Debye length. A potential hypothesis can be attributed to “electrophoretic effect” [41] that 

prevents the formation of complete asymmetric ionic atmosphere. While the asymmetric 
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ionic atmosphere is forming under the applied electric field, the ions with opposite charges 

are passing each other. As water molecules (in solvation layers) are pulled along with each 

ion, each ion (cation and anion), in effect, will see water molecules streaming past itself in 

the opposite direction, and this will exert a viscous drag on each ion, slowing it down to form 

a complete (longer) asymmetric ionic atmosphere. As the coordination number of Cl- < NO3
- 

(Table 2.6), and according to the electrophoretic effect, there are less water molecules to 

create viscous drags in the ionic atmosphere of Na+ and Cl-, thus, a longer asymmetric ionic 

atmosphere will be formed. As a result, the positive contribution of DF effect will follow the 

trend NaCl > NaNO3. 

2.7. Conclusion 

The dielectric properties of environmentally-relevant low concentration electrolyte 

solutions of NaCl, NaNO3, and Na2SO4 which are commonly found in water sources have 

been analyzed through well-controlled laboratory experiments. A semi-empirical parametric 

model to represent the static permittivity has been represented. The model has efficiently 

accounted for contributions due to dilution and internal depolarizing fields, kinetic 

depolarization, dielectric saturation, and the Debye-Falkenhagen effect. The results have 

shown that the decrements in static permittivity due to aggregation of dilution and internal 

depolarizing field, kinetic depolarization, and dielectric saturation follows the trend Na2SO4 > 

NaNO3 > NaCl. It has also been demonstrated that, within the low concentration range 

studied, the static permittivities need to be corrected to incorporate the contributions of both 

kinetic depolarization and Debye-Falkenhagen effect, to obtain non-negative and physically 

realistic number of irrotationally bound water molecules per anion. Rather large number of 

irrotationally bound water molecules for NaNO3, however, suggest the existence of a 

structural mismatch region of water molecules with reduced but non-zero rotational mobility 
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that do not contribute to polarization. Moreover, it has been observed that in NaCl and 

NaNO3 solutions there is significant positive contribution due to the Debye-Falkenhagen 

effect that increases the static permittivity, particularly at lower concentrations. The 

concentration-independent Debye screening length has been defined to justify the strength of 

the DF effect for the electrolyte solutions studied. This parameter has also been discussed to 

be possibly related to the electrophoretic effect and the coordination number, leading to the 

DF effect strength to follow NaCl > NaNO3 > Na2SO4.  

Further measurements and highly accurate experimental data for different electrolyte 

solutions at various temperatures are desirable to evaluate the semi-empirical parametric 

model, examine the number of irrotationally bound water molecules, and also extend our 

knowledge of ionic atmosphere polarization and positive contribution of the DF effect to 

static permittivities in low concentration regions. Studying the cluster of water molecules 

hydrating Cl-, NO3
-, and SO4

2-
 ions in understanding the coordination numbers and the 

physical configuration of ionic atmosphere under an applied electric field will also be of 

great interest. 
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CHAPTER 3.    DIELECTRIC MEASUREMENT OF LOW-CONCENTRATION 
AQUEOUS SOLUTIONS: ASSESSMENT OF UNCERTAINTY AND ION-SPECIFIC 

RESPONSES  

Submitted to Measurement Science and Technology 

Amin Gorji1, 2, a and Nicola Bowler1, 2, 3, a 

 3.1. Abstract 

Excessive amounts of chemicals and ions flowing into water sources cause serious 

environmental and human-health related concerns. The lack of affordable and real-time 

monitoring systems for these contaminants limits effective conservation and management 

strategies. To establish a basis for developing an effective, fast, real-time, and affordable 

sensing system, dielectric spectroscopy method has been employed to characterize aqueous 

solutions of sodium chloride (NaCl), sodium nitrate (NaNO3), and sodium sulphate (Na2SO4) 

at environmentally-relevant (low) concentrations. Dielectric spectra were measured over the 

frequency range from 200 MHz to 20 GHz, at temperature 25 ± 0.01 °C and for 

concentrations 0 to 20 mmol/L. The measured spectra were fitted with a Debye model using 

a non-linear, weighted, least-squares analysis. A method of judiciously exploiting the 

resulting fitting parameters is proposed, that allows the concentration and type of ions to be 

uniquely determined. Uncertainties due to random and systematic errors that contribute to the 

measured dielectric spectra and become critical in the context of low concentration aqueous 

solutions have been assessed. Furthermore, two methods of calculating associated 

uncertainties of the indicator parameters, viz. covariance matrix and Monte Carlo methods 

have been performed. The results show the numerical approach taken by the Monte Carlo 

                                                   
1 Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa, 50011, USA 
2 Center for Nondestructive Evaluation, Iowa State University, Ames, Iowa, 50011, USA 
3 Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, 50011, USA 
a  Email: amingorji68@gmail.com, nbowler@iastate.edu  



www.manaraa.com

55 

method, while yielding the same estimates, reduces the tediousness associated with analytical 

covariance matrix method. 

3.2. Introduction 

In November 2014, the nitrate level in the Des Moines River, IA, USA was reported 

to have reached an unprecedented high [1]. The excessive concentration of nitrates is due to 

efflux from subsurface tile drainage systems of agricultural lands. Tile drainage is a type of 

drainage system that allows for removal of the excess amount of water from the soil by using 

a network of perforated pipes that are typically deployed about 1 m below the soil surface 

[2]. Transport of unwanted chemicals and ions from artificially drained agricultural land into 

rivers has caused explosive plant growth, leaving areas unable to support aquatic life, and 

creating a hypoxic zone in the Gulf of Mexico [3]. Chlorides (Cl-), which are usually present 

in the form of common salt (Na+ and Cl-) in water, can cause serious corrosion of metals and 

concretes. Another potential problem caused by Cl- dissolved in water is in boilers, where it 

can generate a highly corrosive hydrochloric acid upon heating [4]. The human diet is also 

subject to elevated chemical levels when exposed to contaminated drinking water and dietary 

sources. Blue Baby Syndrome, which decreases the blood’s ability to transport oxygen, is 

one severe consequence of nitrate (NO3
-)-laden  drinking water that affects infants below the 

age of six months [5]. Chronic diarrhea, which is caused by the excess amount of sulphate 

(SO4
2-) ions in water, can also be threatening to human life. Sulphate ions are also 

responsible for promoting the biodegradation of organic soils [6]. 

In order to make significant strides in developing effective conservation and 

management systems to limit chemical efflux from agricultural lands, it is critical to have a 

monitoring system that is able to accurately track chemicals’ dynamics. Since the 

concentration of the chemicals is tightly linked to the local hydrology and changes rapidly in 
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time, space, and temperature, spot and send-to-lab analysis yields incomplete data. All of 

these issues reinforce the need for effective monitoring that can inform real-time mitigation 

strategies for unwanted ions in water. In recent years, great efforts have been devoted to the 

development of effective ion monitoring systems. Among them, the two principal approaches 

are ion-selective-electrode (ISE) [7] and ultraviolet (UV) absorption [8] technologies. In ISE 

technology, which is an electrochemical method, the particular ion of interest interacts 

directly with a specialized electrode membrane. As the specific ion of interest diffuses across 

the membrane, an electrical potential is developed between the ISE and a reference electrode. 

In practice, ISEs can experience serious interference from the presence of other ions because 

no membrane is selective to only one ion. Moreover, there is a need for low solubility of the 

membrane so that it does not dissolve in the sample solution, which diminishes the suitability 

of this approach for long continuous periods of deployment. Ultraviolet absorption 

technology makes use of the ability of a medium (in this case the dissolved ions) to absorb 

electromagnetic radiation in the UV spectral range, which are then identified according to 

their spectral fingerprint. This technology, however, requires highly monochromatic UV 

radiation which is difficult to realize in practice, leading to exorbitant installation and 

maintenance costs of the sensor. In summary, current ion monitoring systems do not in 

general meet all criteria for an effective, fast, real-time, and affordable monitoring system to 

operate in agriculturally relevant conditions. 

Dielectric spectroscopy (DS), which monitors the response of a sample, i.e., its 

complex relative permittivity εT(f) = ε'(f) - jε"(f) to an applied time-varying electric field 

with frequency f, is a powerful technique for characterizing physical and chemical properties 

of aqueous solutions [9]. Real relative permittivity ε'(f) indicates the extent to which 
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electrical energy is stored by the sample, while imaginary relative permittivity ε"(f) indicates 

the extent to which electrical energy is dissipated in the sample. The dielectric properties of 

an aqueous solution are determined by its molecular structure which means that, by 

measuring the dielectric properties, we can correlate the influencing parameters including ion 

concentration, ion type, and temperature to the characteristics of the dielectric spectral 

response. 

The dielectric properties of several important ions have been characterized in the last 

decade within the RF and microwave frequency range, in particular from 200 MHz to 89 

GHz, at different temperatures. The complex relative permittivities of chloride-based 

aqueous solutions have been reported in [10, 11] for moderate ion concentrations of 0.05 

mol/L (moles per liter) to 2 mol/L. Likewise, dielectric properties of nitrate-based aqueous 

solutions have been reported within the same concentration range in [12] and extended to 

higher concentrations up to 8.54 mol/L in [13]. Dielectric spectra of sulphate-based ions have 

also been studied for a moderate concentration range, from 0.05 mol/L to 3 mol/L [13, 14]. 

The existing studies of dielectric properties of aqueous solutions, however, have been limited 

by the lack of available data in the literature for very low, agriculturally-relevant 

concentration levels. For several important ions including sodium chloride (NaCl), sodium 

nitrate (NaNO3), and sodium sulphate (Na2SO4) which are found in excess in agricultural tile 

drainage waters [15], the dielectric spectroscopy data do not span the relevant concentration 

levels which are on the order of millimoles per liter (mmol/L). Furthermore, many of the 

existing data are subject to large uncertainties. This becomes even more problematic by 

knowing the fact that the data obtained for low concentration levels are more susceptible to 

random and systematic errors. An increasing need for dielectric data at low concentration 
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also arises from the necessity for effective, fast, real-time, and affordable ion monitoring 

system. To the authors’ knowledge, no prior investigation has attempted the inverse problem 

of exploiting the dielectric spectral features to estimate the ion-specific concentration of 

aqueous solutions. 

The first objective of this research is, therefore, to characterize the dielectric 

properties of rarely-studied agriculturally-relevant low concentration aqueous solutions of 

NaCl, NaNO3, and Na2SO4 in a well-controlled laboratory experiment. In Section 3.3, the 

details of the improved experimental setup to perform broadband dielectric spectroscopy 

over the frequency range 200 MHz to 20 GHz and controlled temperature at 25 ± 0.01 °C are 

presented. Methods of extracting meaningful indicators from the dielectric spectra through 

fitting procedures are explained in Section 3.4. In Section 3.5, a careful assessment of 

uncertainty which, to the knowledge of authors, has not been previously applied in the 

context of dielectric spectroscopy of aqueous solutions in this frequency range is performed. 

The compilation of uncertainty components that contribute to the measured ε' and ε" values, 

along with the analysis to calculate the associated uncertainties of the indicator parameters 

based on covariance matrix and Monte Carlo methods, are also presented. In Section 3.6, a 

method of identifying an ion and its concentration based on extracted indicators from the 

dielectric spectra is proposed. The following work indeed lays a foundation upon which a 

prototype real-time monitoring system can be built to target the most effective indicators. 

The chapter is drawn to conclusion in Section 3.7. 

3.3. Experimental Setup 

The experimental setup developed to measure the dielectric spectra of aqueous 

solutions is shown in Figure 3.1. Dielectric experiments were performed using a Speag open-

ended coaxial DAK3.5 Dielectric Probe Kit (200 MHz to 20 GHz recommended bandwidth) 
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and Anritsu 37347C Vector Network Analyzer (VNA) (40 MHz to 20 GHz nominal 

bandwidth). Open-ended coaxial probes are fairly broadband and are well suited for 

measuring properties of semi-liquid and liquid materials that allow perfect contact with the 

face of the sensor without any air gaps [16]. The optimal probe size and sensitivity of the 

sensor is related to the frequency range and the complex permittivity of the sample. As 

shown in Figure 3.1, the probe was mounted on a rigid stand and tilted at an angle of about 

30° to the vertical for these measurements.  After calibration, described below, disturbance of 

the probe and cable connecting it to the VNA was avoided by moving the sample beaker to 

encompass the probe instead of moving the probe and cable. The DAK software was used to 

calculate the relative permittivity, i.e., ε' and ε" of the sample from the complex reflection 

coefficient (S11) measured at the interface between the immersed coaxial probe and the liquid 

sample (the calibration reference plane). 

A one-port calibration using three standards each having different but known 

complex reflection coefficient was conducted prior to measurement. This technique, which is 

based on bilinear transform corrections [17], is the most common and reliable method used 

for calibrating VNAs for open-ended coaxial probe measurements. The reference plane for 

the calibration of open-ended coaxial probes is normally defined to be at the face of the 

sensor. In this work, the system was calibrated using three standards: a shorting block, air 

(open-circuited), and a reference liquid which was, in this case, deionized water at 25 °C. For 

measuring electrolyte solutions in which water is the solvent, calibration with deionized 

water often gives the lowest uncertainties [16]. Another, different, reference liquid should be 

used for checking the calibration uncertainty. As reported in [18, 19], mercury (liquid phase 

metal) was alternatively used as a short circuit standard to improve the overall performance 
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and reproducibility of their measurements. Due to possible risks and health effects of 

exposure to mercury vapor, however, it is commonly not recommended as a calibration 

standard. For each sample, the frequency was swept and recorded ten times at 100 frequency 

points between 200 MHz and 20 GHz with equal logarithmic frequency steps. Instead of 

obtaining the conductivity  as an adjustable parameter in the fitting procedure, it was 

measured separately using a Seven2GoTM Conductivity meter with InLab720 probe 

(operating range 0.1 to 500 μS/cm ± 0.5 %), to reduce uncertainty in obtaining 

corresponding dielectric parameters by spectral fitting (discussed in Section 3.4). The 

conductivity probe was calibrated using a Mettler Toledo 84 μS/cm standard potassium 

chloride solution at 25 °C. 

The sample beaker was placed in a temperature-controlled Anova R10 Refrigerated 

and Heating Circulator (± 0.01 °C) and the temperature held at 25 ± 0.01 °C during this 

experiment. Dowtherm SR-1 Ethylene Glycol oil (18.1 Vol. %) was used as the bath fluid in 

order to minimize the influence of ambient temperature fluctuations. It was observed that the 

temperature variation throughout the sample can significantly increase the uncertainty 

associated with the measured dielectric spectra, potentially masking concentration- or ion-

dependent responses particularly when the ion concentration is very low.  To mitigate against 

the uncertainty generated by temperature variability, an electric stirrer was immersed in the 

sample beaker and the sample liquid stirred continuously but gently, avoiding turbulence, 

promote a uniform temperature throughout the sample. 

Three sets of environmentally-relevant electrolyte solutions were prepared and 14 

concentrations c of each (including de-ionized water as zero concentration) were tested: (i) 

sodium chloride (NaCl) solutions with concentration ranging from c = 0 to 11.26 mmol/L, 
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(ii) sodium nitrate (NaNO3) solutions with c = 0 to 17.83 mmol/L, and (iii) sodium sulphate 

(Na2SO4) solutions with c = 0 to 12.45 mmol/L. Measurements were made on samples of 

increasing concentration, by successive titration of a pre-calculated volume of each stock 

electrolyte into a specified volume of deionized water. At each titration step, uncertainty ± 

0.05 ml in volume was introduced. 

 
 

 

Figure  3.1    Experimental setup for measuring the dielectric spectrum and conductivity of an 
aqueous ionic solution at controlled temperature. The vector network analyzer is not shown 

in the picture. 

(a) 

(b) 
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3.4. Fitting Procedure 

Assuming that each individual measured pair of (xi, yi) i = 1, 2, …, n, where n is the 

total number of data points, is drawn from a normal (Gaussian) distribution with mean 

(actual value) ŷ(xi) and standard deviation σi, the probability distribution P for establishing 

the observed set of measurements of the n values of yi about the actual value ŷ(xi) is the 

product of the probability distribution for each observation [20]: 
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Maximizing the probability P is equivalent to minimizing the sum in the exponential 

term in (3.1). This sum, which is also known as the least-squares fitting function or the 

weighted sum of squares 2, can be defined 
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In measuring dielectric spectra of aqueous solutions, the measured pair values of (f, 

εT) where f is the frequency of measurement and εT is the total complex relative permittivity 

can be obtained by combining the measured frequency-dependent polarization ε'(f) and 

energy dissipation ε"(f) parameters. The total complex relative permittivity εT which is 

composed of real and imaginary components can be written as:  
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where j = √−1 and the energy dissipation component ε"(f) is composed of dipolar loss ε"d(f) 

and specific conductivity  (dc conductivity) terms. The fitting of dielectric spectra requires 

care especially, in this study, for samples with low concentration for which the dielectric 
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spectra differ only slightly from that of deionized water. By subtracting the specific 

conductivity contribution from ε"(f) to take into account the dipolar loss ε"d(f) only, and 

within the frequency range under consideration, the corrected complex relative permittivity 

εc(f)= ε'(f)-jε"d(f) can be approximated by single-term Debye relaxation model ε̂(f) as  
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where εdc is the static permittivity, ε∞ is the permittivity at a frequency well above that of the 

relaxation frequency fr, and τ=1/(2πfr) is the relaxation time. To obtain the best fit to the 

measured data we need to find values of εdc, ε∞, and τ that minimize (3.2). By incorporating 

(3.3) and (3.4) into (3.2), the weighted sum of squares can be formulated as: 
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where σ'i and σ"i are the standard deviations of ten recorded spectra of ε' and ε"d, respectively. 

Because analytic methods of least-squares fitting cannot be used for nonlinear problems, it is 

necessary to search the parameter space in the following way. A simultaneous, non-linear, 

weighted, unconstrained, least-squares analysis to minimize the residuals 2 based on 

Levenberg-Marquardt searching algorithm [21] was performed. The Levenberg-Marquardt 

algorithm is a combination of a gradient search, which uses the slope “steepest descent” of 

the function to rapidly approach the minimum from far away, and the method of linearly 

approximating the fitting function as the search converges near the minimum leading to 

increased accuracy. The Levenberg-Marquardt algorithm, therefore, guarantees finding the 

minimum most directly and efficiently. 
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3.5. Uncertainty Analysis 

3.5.1. Compilation of Uncertainty Elements 

The measurement uncertainty [22, 23], which may limit the precision and accuracy of 

the measurement result, derives from random fluctuations of replicate measurements and 

from systematic errors that influence each result in a similar way. Careful assessment of the 

measurement uncertainties is necessary for reliable interpretation of measurement data in 

general and is particularly important in this case concerning the dielectric properties of 

electrolyte solutions at low concentrations. Instrument uncertainty of between 1 and 3 % in 

ε' and between 2 and 4 % in ε" is common at frequencies below 100 GHz and may easily 

reach ~10 % for both quantities in the THz region [9]. The ability to resolve the variations in 

ε' and ε" that arise for small changes in concentration is governed by the requirement that 

they must exceed the experimental uncertainties for ε' and ε", i.e., u'(fi) and u"(fi), 

respectively, where fi is the frequency of measurement. In addition, as the number of 

parameters in the fitting equation increases (which is equivalent to reducing the degrees of 

freedom = n – m where n is the number of data points and m is the number of fitting 

parameters) the associated uncertainty for each fitting parameter increases [24]. In this work, 

the latter difficulty is mitigated by measuring the d.c. conductivity  independently using a 

high-precision instrument, and then subtracting that contribution /2πf from the 

experimentally accessible ε"(f), to obtain ε"d(f). By fitting ε"d(f) rather than ε"(f), the number 

of fitting parameters is reduced and hence the associated uncertainty for each fitting 

parameter is decreased. 

In this work, the combined standard uncertainties u'c(fi) and u"c(fi) of the measured 

dielectric spectra were calculated in accordance with established NIST [25] and GUM [26] 
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guidelines. The extent of random errors that, in this work, are mainly due to VNA noise, 

temperature fluctuations, thermoelectric effects, and electromagnetic interference, can be 

calculated from repeated measurements. Systematic errors due to non-ideal probe 

dimensions, imperfect instrument (VNA) calibration, calibration of the probe (short-air-load 

method), and cable phase instability can be estimated from the deviation of values measured 

on a reference material [27] from a priori known values measured independently on the same 

material. A reference standard is defined as a material with well-characterized properties. 

Since, in this work, deionized water is used as a calibration standard, it cannot be employed 

as a reference material for the purpose of calculating the systematic errors in the 

measurement system.  Instead, methanol is used as a reference standard in this work. 

Random errors and systematic errors are combined to calculate the total uncertainty in the 

measurement of the dielectric properties. 

The budget for the calculation of measurement uncertainties in this work is shown in 

Table 3.1. The individual standard uncertainties include contributions from the sources 

described in following sections. 

3.5.1.1. Random errors 

Random errors are obtained from 10 recorded spectra of repeated measurements on 

the test sample and are conducted under strict temperature control at 25.00 ± 0.01 °C. At 

each measurement frequency, the mean value of ε'(fi) and ε"(fi) and the corresponding 

standard deviations σε'(fi) and σε"(fi) were calculated in order to be used in the fitting 

procedure, (3.5). The standard deviation of the mean (SDM), σε'(fi)/√N and σε"(fi)/√N, 

where N is the number of recorded spectra, were calculated at each frequency. The relative 

(%) SDM values with respect to mean ε'(fi) and ε"(fi) were calculated as relative uncertainty 
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components a'rand(fi) and a"rand(fi). As random errors are best described by a normal 

(Gaussian) distribution, the relative standard uncertainties u'rand(fi) and u"rand(fi) can be 

calculated by dividing the relative uncertainty components a'rand(fi) and a"rand(fi) by factor 1. 

3.5.1.2. Systematic errors 

Systematic errors are obtained through comparison of the measured and reference 

data for methanol CH3OH at 25 °C. A hybrid set of reference methanol data was created by 

combining the permittivity data reported by NPL [28] for frequency range 200 MHz to 10 

GHz with that presented by Sato et al. [29] for higher frequencies from 10 GHz up to 20 

GHz, at 25 °C. The former data set captures the first relaxation of methanol, which occurs at 

3 GHz, and the latter covers the second relaxation which occurs at around 20 GHz. The 

single-term and double-term Debye model parameters for the methanol reference data are 

listed in Table 3.2. Comparing the relaxation parameters of the hybrid model with those 

obtained in this work shows that the main discrepancy lies around the frequency range of the 

second relaxation process (denoted by II). That frequency range contributes more to the 

systematic errors, therefore. Moreover, the observed differences in relaxation parameters can 

be attributed to limited data at frequencies well above the second relaxation frequency (~ 22 

GHz), which causes inadequacy of information in fitting ε∞. Treating the systematic error to 

be relative [30], the recovery components R'(fi) and R"(fi) at each frequency  can be 

calculated as 

 

meth

ref

meth

ref

( )( )
( )

( )( )
( )

i
i

i

i
i

i

ff
f

ff
f

R

R








 




 



                                                     (3.6) 



www.manaraa.com

67 

where ε'meth(fi) and ε"meth(fi) are the mean values of measured methanol data, and ε'ref(fi) and 

ε"ref(fi) are the reference hybrid methanol data with parameters listed in Table 3.2. Note that, 

the bias term approach holds if the systematic error is assumed to be absolute [31]. In this 

work, the individual permittivity results are not corrected for the recognized significant 

recovery. Correction may be unsafe to apply as it fundamentally changes the original 

permittivity values obtained from direct measurements. As the extracted fitting parameters, 

which are of great interest, depend on the permittivity values in the whole frequency range, 

unnecessary correction of permittivity values at each frequency may have an effect on the 

final extracted fitting parameters and thus hinder the possibility to track any potential trends 

in data with respect to changes in concentration. It accordingly becomes important to 

consider how uncorrected permittivity results can be treated in terms of uncertainty 

estimation. The best practice, which has been widely discussed in the literature [31, 32], is to 

enlarge the uncertainty intervals via recovery terms to account for known or suspected 

systematic errors. The enlarged combined standard uncertainty will be formulated later in 

this section. 

The uncertainties associated with the recovery terms at each measured frequency, 

uR'(fi) and uR"(fi) are estimated through the law of propagation of uncertainty [26] performed 

on (3.6) as 
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where u'meth(fi) and u"meth(fi) are the relative standard uncertainties of measured methanol 

data, and u'ref(fi) and u"ref(fi) are the relative standard uncertainties associated with the 
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reference hybrid methanol data. The u'meth(fi) and u"meth(fi) were calculated as relative SDM 

of 10 recorded methanol data with respect to ε'meth(fi) and ε"meth(fi), respectively. 

3.5.1.3. Reference data uncertainty 

Uncertainties of the reference data u'ref(fi) and u"ref(fi) should be considered. These 

uncertainty values can be found in the literature where the data are taken. The relative 

uncertainty components associated with reference methanol data a'BF(fi) and a"BF(fi), obtained 

by NPL at 25 °C, corresponding to uncertainties of “Best-fit” (BF) [28] values of ε' and ε" 

that include contributions of NPL’s random and systematic errors. The corresponding BF 

relative standard uncertainties u'BF(fi) and u"BF(fi) can be calculated by dividing the relative 

uncertainty components by factor 1 under the normal distribution. The BF uncertainty values 

do not, however, include uncertainty contributions associated with the temperature 

measurements [28]. As reported by NPL guidelines, the standard uncertainty associated with 

the temperature measurement of the reference data is ± 0.05 °C. By combining the 

temperature uncertainty of our work, i.e., 0.01 °C (Section 3.3) with that of NPL to get u(T) 

= √(0.052 + 0.012), and through the law of propagation of uncertainty, one can evaluate the 

relative standard uncertainties u'T(fi) and u"T(fi) associated with overall temperature 

contribution, as in (3.8) 
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where the partial derivatives are calculated numerically between the BF permittivity values 

of two nearest temperatures which are available in NPL guidelines. For the reference data 
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presented by Sato et al., however, no uncertainty values were reported. The overall relative 

standard uncertainties associated with reference methanol data u'ref(fi) and u"ref(fi) can be 

calculated as (3.9) by combining the relative standard uncertainties of BF and temperature 

measurement:  
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The uncertainties of reference data (3.9) are used to calculate the uncertainties of recovery 

terms (3.7), which are incorporated in calculating the overall uncertainties discussed next. 

3.5.1.4. Combined standards uncertainties 

As mentioned earlier, the combined standard uncertainties should be enlarged to 

account for possible systematic errors. The combined relative standard uncertainties u'c(fi) 

and u"c(fi) can be calculated as the root sum of squares (RSSu) of individual relative standard 

uncertainties and the recovery term [31] as  
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where the recovery terms R'(fi) and R"(fi), and the corresponding recovery uncertainty terms 

uR'(fi) and uR"(fi), can be calculated through (3.6)-(3.9). The standard uncertainties provide a 

level of confidence of approximately 68 %. 

By way of demonstration of this uncertainty analysis as applied in this work, each 

contribution of individual relative standard uncertainty is plotted in Figure 3.2 for a sample 

7.139 mmol/L sodium nitrate (NaNO3) solution. As can be seen, the systematic error  



www.manaraa.com

70 

Table  3.1     Compilation of relative standard uncertainties over the frequency range 200 
MHz to 20 GHz for measuring the permittivity of aqueous ionic solutions. The nomenclature 
and methodology are taken from NIST [25] and GUM [26]. Type A evaluation of uncertainty 

is based on statistical analysis of a series of observations whereas Type B evaluation of 
uncertainty relies upon scientific assessment of information other than Type A. Each source 

of uncertainty is composed of a real and an imaginary part. 

 
Source of uncertainty 

Type of 
uncertainty 

Probability 
distribution 

Standard 
uncertainty (%) 

Repeatability (test sample) a A Normal urand(fi) 
Recovery (deviation from reference data) b - - R(fi)-1 
Repeatability (reference sample) a A Normal umeth(fi) 
Uncertainty of reference data (Best-fit values) c, d B Normal uBF(fi) 
Uncertainty of reference data (Temperature) d, e B Propagation uT(fi) 
Combined standard uncertainty f  uc(fi) = [urand(fi)2 + (R(fi)-1)2 + uR(fi)2]1/2 

a Standard deviation of the mean (SDM) calculated from 10 recorded spectra. 
b A hybrid methanol data created from Gregory et al. [28] and Sato et al. [29]. 
c Gregory et al. [28]: uncertainties of best-fit permittivity values which are provided only up to 5 

GHz. 
d Sato et al. [29]: no associated uncertainty was reported. 
e  Temperature uncertainty: ± 0.05 °C Gregory et al. [28] and ± 0.01 °C this work. 
f  Refer to (3.6)-(3.9). 
 

Table  3.2     Debye model parameters for methanol data at 25 °C, various authors. 

Reference Model εdcI τI (ps) εdcII τII (ps)   ε∞ 
Gregory et al. [28] (0.05-10 GHz) a Debye 1D 32.66  

± 0.03 
50.670  
± 0.266 

- - 5.563  
± 0.088 

Sato et al. [29] (0.5-25 GHz) b Debye 2D 32.52 51.168 6.07 7.24 4.8 
Hybrid model (0.2-20 GHz) c Debye 2D 32.64 51.431 5.93 7.33 4.621 
This work (0.2-20 GHz) Debye 2D 32.34 51.168 5.84 5.11 3.985 

  a The measured frequency in their work is 0.05-5 GHz, but good accuracy is claimed up to 10 GHz 
[28]. 

  b No associated uncertainty was reported. 
  c Created by combining permittivity data of Gregory et al. [28] (200 MHz to 10 GHz) and Sato et 

al. [29] (10 to 20 GHz)  
 

represented by recovery term |R(fi)-1| provides the main contribution to the uncertainty in 

both real and imaginary parts, and is far larger than the random errors urand(fi). 

In addition, there is a sweet spot in the frequency range between 1 and 10 GHz in 

which all uncertainty contributions are around or below 1 %. Increased uncertainty below 1 

GHz, particularly in the imaginary part of the permittivity, can be attributed to the minimum 
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Figure  3.2    Calculated individual relative (%) standard uncertainties in permittivity 
measured over the frequency range 200 MHz to 20 GHz for a sample NaNO3 solution with 
concentration c = 7.139 mmol/L at 25 °C. (a) Real, and (b) imaginary parts.  Random and 
systematic sources of uncertainty are due to repeatability u'rand (u'meth) and u"rand (u"meth), 

deviation from reference data represented by recovery terms |R'-1| and |R"-1|, uncertainty in 
best-fit values of reference data u'BF and u"BF, and temperature uncertainty of reference data u'T 
and u"T. The uncertainties of reference data are provided only up to 5 GHz; refer to Table 3.1 

for further details. 

(a) 

(b) 
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recommended operating frequency of the DAK3.5 open-ended coaxial probe, i.e., 200 MHz. 

As the measurement frequency approaches the minimum recommended frequency, the 

systematic errors (which are partly related to the errors in probe dimensions) become 

significant. 

3.5.2. Covariance Matrix Method 

After finding the best fitting parameters εdc, ε∞, and τ that minimize (3.5), it is 

necessary to obtain the uncertainties u(εdc), u(ε∞), and u(τ) associated with the fitting 

parameters. In general, these can be calculated by extending the propagation of uncertainties 

method which is a common method used in linear regression analysis [33]. As the number of 

terms in the fitting equation increases and particularly in the case of non-linear regression, 

however, the algebra becomes more tedious and the propagation method fails. Therefore, the 

customary method for obtaining the uncertainties of the fitting parameters for non-linear 

regressions involves calculating the covariance matrix Cmm where m is the number of fitting 

parameters [34, 35], as in 

 1 2( )TC J J s   (3.11) 

where Jnm is the Jacobian matrix, n is the total number of data points, JT
mn is the transpose 

matrix of J, and s2 is the mean squared error (MSE) of the regression. The Jacobian matrix 

comprises the first-order partial derivatives of the fitting equation ŷ(xi, a1, …, am) with respect 

to the fitting parameters a1, …, am. In order to include the uncertainties associated with the 

measured data uc(xi) in obtaining the uncertainties of the fitting parameters, the Jacobian 

matrix and the mean squared error are weighted as in (3.12) and (3.13), respectively, 
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where y(xi) is a set of measured data points, as already noted. Replacing y(xi) by the 

measured ε'(fi) and ε"d(fi), the fitting equation ŷ(xi, a1, …, am) by Debye relaxation model ε̂'(fi, 

εdc, ε∞, τ) and ε̂"(fi, εdc, ε∞, τ), and uc(xi) by u'c(fi) and u"c(fi), (3.12) and (3.13) become 
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where the number of rows in the Jacobian matrix is 2n, including both the real and the 

imaginary parts in the calculation. In addition, the partial derivatives can be calculated 

numerically at each frequency through finite difference methods (FDM). By employing 

(3.14) and (3.15) in (3.11), the covariance matrix can then be calculated as 
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C C C C
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                                             (3.16) 

where Cjk (j, k = 1, 2, 3) are the resulting matrix elements, and Cjj are the diagonal elements 

of the covariance matrix. In this work, the partial derivatives were calculated and the matrix 

inversion performed using available routines in Matlab ™. The expanded uncertainties 

associated with the fitting parameters U(εdc), U(ε∞), and U(τ) that return (1 -)100 % 

confidence interval are evaluated as  
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                                                 (3.17) 

where t/2,(2n-m) is computed using the inverse of Student's t cumulative distribution function 

[36]. For the standard uncertainties u(εdc), u(ε∞), and u(τ) that return ~ 68 % confidence 

interval, t0.32/(200-4) = 0.996 which can be approximated to unity. 

3.5.3. Monte Carlo Method 

A Monte Carlo (MC) calculation [37, 38] is a statistical method of studying problems 

that contain a combination of many different distributions, based on the use of artificially 

generating random numbers. With Monte Carlo techniques, very complicated scientific and 

mathematical problems can be solved with neither a deep theoretical understanding of 
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statistical analysis nor sophisticated programming techniques [20]. In order to calculate the 

standard uncertainties u(εdc), u(ε∞), and u(τ) associated with the fitting parameters, the 

Monte Carlo modeling technique presented by Gregory et al. [39] has been applied. In this 

method, an approximation to the distribution function of each individual source of 

uncertainty (Table 3.1) is established numerically by making random draws from the 

associated probability distributions. The Monte Carlo modeling, as shown in Figure 3.3, is 

performed with consideration of the following factors.  

3.5.3.1. Generating random errors 

At each frequency, M random errors ε' and ε" are drawn from the probability distribution 

of each individual source of uncertainty. The random errors are taken from the corresponding 

populations with zero mean ( = 0) and variances () equal to relative standard uncertainties 

listed in Table 3.1, in order to generate εi' and εi" (i = 1,…,5) at each draw. These values 

are also generated independently at every measured frequency to simulate random noise [39]. 

 

Figure  3.3    The procedure followed for computing each trial permittivity data set for 
evaluation of the standard uncertainties associated with the Debye fitting parameters, (3.4). 

In the Monte Carlo modeling in this work, 104 trials are generated. The relative standard 
uncertainties and recovery (Table 3.1) can be best described by a normal (Gaussian) 

distribution, norm(,), where  is the mean and  is the variance of the population. The 
standard deviation of a set of samples is denoted ‘std’. 
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3.5.3.2. Generating trial permittivity data 

The MC modeling requires a large number of trial data to be constructed which are 

representative of the expected statistical variations of the measured data. Therefore, 104 trial 

permittivity data sets (M =104) are created by superposing the generated random errors to the 

measured permittivity data ε' and ε"d at each frequency point to obtain trial permittivity data, 

ε'Trial and ε"d Trial. The residual discrepancies between each trial permittivity data and the 

measured data are plotted in Figure 3.4. 

3.5.3.3. Generating trial fitting parameters 

The Debye fitting procedure, according to (3.5), is performed on each trial 

permittivity data set to extract the trial fitting parameters, i.e., [dc]M1, [∞]M1, and [τ]M1. 

The standard deviations of 104 trial fitting parameters are taken to be their associated 

standard uncertainties, u(εdc), u(ε∞), and u(τ). The reported uncertainty is based on a 

standard uncertainty multiplied by a coverage factor k = 1, providing a level of confidence of 

approximately 68 %. 

3.5.4. Results 

The extracted Debye relaxation parameters along with the associated uncertainties 

and the mean squared error (s2) for each of NaCl, NaNO3, and Na2SO4 aqueous solutions at T 

= 25 °C are listed in Tables 3.3 to 3.5. The specific conductivity , as mentioned in Section 

3.3, was measured directly using a conductivity meter. There were, however, concentrations 

where  was higher than the operating range of the conductivity meter, i.e., greater than 500 

μS/cm. In such cases, the specific conductivity  was treated as an additional fitting 

parameter, meaning that the sum of a single-term Debye relaxation model and a conductivity  
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Figure  3.4    Residual discrepancies between Monte Carlo trial permittivity data and 
measured permittivity data (a) real part (ε' – ε'Trial) (b) imaginary part (ε"d – ε"d Trial), over the 

measured frequency range 200 MHz to 20 GHz for a sample NaNO3 solution with c = 7.139 
mmol/L at 25 °C. For clarity, only 100 trials are plotted in this figure. 

 

(a) 

(b) 
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contribution (/2π0f) was used to analytically represent the measured permittivity spectrum, 

i.e., (3.3). 

According to Tables 3.3 to 3.5, good agreement between the uncertainty values of the 

fitting parameters evaluated through the covariance matrix method and the Monte Carlo 

method is obtained. In general, the uncertainty values evaluated through the Monte Carlo 

method are slightly larger than those evaluated through the covariance matrix method. This is 

likely due to the approximation nature of the Monte Carlo method, which takes advantage of 

artificially generating random numbers to construct the population of individual sources of 

uncertainty and eliminates the need to perform analytical calculations as required by the 

covariance matrix method. It is also worth mentioning that the uncertainty values calculated 

through the covariance matrix method slightly increase with concentration. According to 

(3.11), there is a direct proportion between the covariance matrix Cmm and the MSE (s2). As 

the MSE increases with concentration, likewise, the covariance matrix becomes larger and 

the corresponding uncertainty elements associated with the fitting parameters increase. 

The fitting parameters presented in Tables 3.3 to 3.5 provide a set of benchmark data 

for environmentally-relevant aqueous solutions of NaCl, NaNO3, and Na2SO4 at 25 °C. The 

fitted model is a single-term Debye relaxation function and provides the corresponding static 

permittivity εdc, infinite-frequency permittivity ε∞, relaxation time τ, and specific 

conductivity . In the next section, a method of identifying an ion and its concentration based 

on indicators extracted from the permittivity spectra is discussed. 
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Table  3.3     Parameters of the single-term Debye model (εdc, τ, and ε∞), the associated 
standard uncertainties (u(εdc), u(τ), and u(ε∞)) calculated from Monte Carlo and covariance 
matrix methods, and mean squared error (s2) of aqueous NaCl solutions at T = 25 °C. The 
standard uncertainties provide a level of confidence of approximately 68 %. The specific 

conductivity was measured independently up to 500 S/cm with ± 0.5 % instrument 
uncertainty. For concentrations corresponding to specific conductivity greater than 500 

S/cm,  was treated as an additional fitting parameter, and the covariance matrix and Monte 
Carlo methods give similar uncertainty values within reported significant figures. 

c   εdc u(εdc) τ  u(τ) ε∞ u(ε∞) s2 
(mmol/L) (μS/cm)  Monte 

Carlo 
covar. 
matrix 

(ps) Monte 
Carlo 

covar. 
matrix 

 Monte 
Carlo 

covar. 
matrix 

 

0 8.184 ± 0.040 78.362 0.078 0.073 8.275 0.047 0.044 5.237 0.16 0.093 0.002 
0.294 ± 0.016 35.13 ± 0.18 78.380 0.080 0.073 8.260 0.047 0.044 5.066 0.17 0.093 0.002 
0.585 ± 0.024 69.91 ± 0.35 78.403 0.078 0.073 8.254 0.047 0.044 4.868 0.16 0.096 0.004 
0.873 ± 0.029  105.44 ± 0.52 78.421 0.078 0.075 8.192 0.046 0.044 4.255 0.15 0.11 0.016 
1.159 ± 0.033 138.18 ± 0.70 78.459 0.080 0.077 8.175 0.047 0.045 3.998 0.16 0.14 0.041 
1.722 ± 0.040 207.8 ± 1.0 78.444 0.078 0.076 8.181 0.046 0.045 3.996 0.16 0.13 0.044 
2.276 ± 0.045 273.1 ± 1.4 78.415 0.079 0.076 8.172 0.046 0.045 3.894 0.16 0.13 0.047 
2.820 ± 0.049 345.1 ± 1.7 78.387 0.079 0.078 8.126 0.046 0.045 3.527 0.16 0.14 0.049 
4.244 ± 0.049 517.0 ± 7.6 78.373 0.079 0.078 8.129 0.046 0.046 3.462 0.16 0.15 0.065 
5.653 ± 0.049 675.5 ± 8.4 78.357 0.078 0.079 8.081 0.045 0.046 3.067 0.15 0.16 0.075 
7.045 ± 0.049 838.2 ± 9.1 78.355 0.078 0.081 8.104 0.046 0.047 3.092 0.15 0.18 0.120 
8.462 ± 0.048 977.0 ± 9.4 78.340 0.078 0.083 8.080 0.046 0.048 2.849 0.15 0.20 0.131 
9.853 ± 0.047 1167 ± 10 78.316 0.081 0.089 8.061 0.046 0.050 2.693 0.17 0.24 0.153 
11.259 ± 0.047 1297 ± 10 78.266 0.078 0.083 8.058 0.045 0.048 2.658 0.15 0.21 0.144 

 

Table  3.4     As for Table 3.3 but for aqueous NaNO3 solutions. 

c   εdc u(εdc) τ  u(τ) ε∞ u(ε∞) s2 
(mmol/L) (μS/cm)  Monte 

Carlo 
covar. 
matrix 

(ps) Monte 
Carlo 

covar. 
matrix 

 Monte 
Carlo 

covar. 
matrix 

 

0 8.331 ± 0.042 78.363 0.079 0.073 8.268 0.047 0.044 5.187 0.17 0.095 0.001 
0.743 ± 0.043 84.77 ± 0.42 78.352 0.077 0.073 8.258 0.046 0.044 5.096 0.15 0.093 0.002 
1.479 ± 0.060 168.50 ± 0.84 78.344 0.076 0.073 8.242 0.046 0.044 4.962 0.15 0.090 0.003 
2.209 ± 0.073 250.5± 1.3 78.341 0.078 0.073 8.235 0.047 0.044 4.873 0.16 0.090 0.005 
2.932 ± 0.083 333.3 ± 1.7 78.325 0.076 0.073 8.226 0.046 0.044 4.732 0.15 0.087 0.005 
3.649 ± 0.092 414.6 ± 2.1 78.310 0.077 0.073 8.209 0.046 0.044 4.605 0.15 0.089 0.006 
4.36 ± 0.10 491.2 ± 2.5 78.292 0.078 0.073 8.213 0.047 0.044 4.659 0.16 0.089 0.007 
5.06 ± 0.11 566.9 ± 8.0 78.289 0.078 0.073 8.196 0.046 0.044 4.480 0.16 0.094 0.011 
5.76 ± 0.11 648.0 ± 8.1 78.275 0.078 0.073 8.188 0.046 0.044 4.386 0.16 0.098 0.014 
6.45 ± 0.12 728.8 ± 8.7 78.263 0.079 0.074 8.177 0.047 0.044 4.291 0.17 0.11 0.018 
7.14 ± 0.13 809.0 ± 9.0 78.270 0.079 0.074 8.166 0.046 0.044 4.155 0.16 0.10 0.023 
10.74 ± 0.13 1200± 10 78.185 0.081 0.075 8.162 0.047 0.044 4.132 0.17 0.11 0.025 
14.31 ± 0.13 1540 ± 13 78.014 0.081 0.074 8.163 0.047 0.044 4.308 0.18 0.10 0.016 
17.83 ± 0.12 1946 ± 13 77.975 0.078 0.073 8.156 0.046 0.044 4.273 0.16 0.095 0.014 
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Table  3.5     As for Table 3.3 but for aqueous Na2SO4 solutions. 

c   εdc u(εdc) τ  u(τ) ε∞ u(ε∞) s2 
(mmol/L) (μS/cm)  Monte 

Carlo 
covar. 
matrix 

(ps) Monte 
Carlo 

covar. 
matrix 

 Monte 
Carlo 

covar. 
matrix 

 

0 8.218 ± 0.041 78.362 0.078 0.073 8.277 0.047 0.044 5.255 0.16 0.099 0.002 
0.325 ± 0.019 78.44 ± 0.39 78.351 0.082 0.073 8.271 0.048 0.044 5.173 0.19 0.10 0.002 
0.965 ± 0.032 225.0 ± 1.1 78.322 0.077 0.073 8.277 0.046 0.044 5.246 0.16 0.097 0.003 
1.281 ± 0.036 297.0 ± 1.5 78.316 0.079 0.073 8.270 0.047 0.044 5.147 0.17 0.10 0.002 
1.594 ± 0.040 366.9 ± 1.8  78.305 0.079 0.073 8.267 0.047 0.044 5.145 0.17 0.10 0.003 
2.212 ± 0.047 496.7 ± 7.8 78.272 0.078 0.073 8.273 0.047 0.044 5.221 0.16 0.10 0.003 
2.819 ± 0.052 638.1 ± 8.5 78.240 0.078 0.073 8.267 0.047 0.044 5.214 0.16 0.098 0.003 
3.119 ± 0.054 703.0 ± 8.6 78.221 0.078 0.073 8.280 0.047 0.044 5.303 0.16 0.11 0.003 
4.693 ± 0.054 1038 ± 10 78.167 0.079 0.074 8.266 0.047 0.044 5.178 0.17 0.11 0.003 
6.250 ± 0.054 1320 ± 11 78.119 0.079 0.075 8.265 0.047 0.045 5.163 0.17 0.12 0.005 
7.789 ± 0.054 1596 ± 12 78.052 0.078 0.075 8.252 0.047 0.045 5.077 0.16 0.12 0.005 
9.356 ± 0.053 1904 ± 13 77.998 0.077 0.075 8.245 0.047 0.046 4.945 0.15 0.13 0.007 
10.895 ± 0.052 2163 ± 14 77.930 0.076 0.076 8.238 0.046 0.046 4.914 0.15 0.14 0.010 
12.449 ± 0.051 2394 ± 16 77.832 0.077 0.079 8.221 0.046 0.048 4.857 0.15 0.17 0.022 

 

3.6. Ion-Specific Indicators 

Extracted Debye parameters εdc, τ, and  given in Tables 3.3 to 3.5 for NaCl, NaNO3, 

and Na2SO4 samples respectively are plotted against concentration in Figures 3.5 to 3.7. In 

addition, the parameters are fitted using appropriate chemical-physical models. A semi-

empirical model of static permittivity ε̂dc within the defined range of concentration has been 

proposed in previous work [40] as 
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where ε0dc, ε0∞, and τ0 correspond to the values for deionized water (solvent), εe = 2 is 

approximated for nonpolar solutes [41], v(c) = cM/ρ is volume fraction of the solute where c 

(mol/L),  (g/L), and M (g/mol) are concentration of solute, water density, and solute 

molecular weight, respectively, t(c) (S/m) is the theoretical conductivity, and 1, 2, and 3 

are adjustable parameters extracted through the fitting procedure. Each term in (3.18) 

3 4 

2 

1 
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expresses a polarization mechanism that is present in these electrolyte solutions. The model 

presented in (3.18) efficiently accounts for contributions due to the Debye-Falkenhagen 

effect (term 1) [42], dilution and internal depolarizing fields (term 2) [41], kinetic 

depolarization (term 3) [43], and dielectric saturation (term 4) [44]. An empirical model of 

relaxation time τ̂ can also be represented as follows [11]  

0
1 2 1 2 1ˆ( , , ) exp( ) ( )c c                                            (3.19) 

where 1 and 2 are adjustable parameters extracted through the fitting procedure. The 

theoretical conductivity t(c) can be calculated as [45] 

310( )t B cc c   
                                                   (3.20) 

where c (mol/L) is the solute concentration, ∞ (m2S/mol) is the infinite molar conductivity 

of the solution at infinite dilution, and B (m3.5S/mol1.5) is the coefficient combining the non-

idealities of electrophoretic and relaxation effects [45]. The input quantities required to 

calculate the volume fraction and conductivity of each electrolyte solution are listed in Table 

3.6. The corresponding fitting parameters resulting from (3.18) for static permittivity ε̂dc and 

from (3.19) for relaxation time τ̂ are given in Table 3.7. 

The static permittivity εdc of NaCl [43, 46], NaNO3 [12], Na2SO4 [47, 48] and indeed 

most other strong electrolytes [11, 14] in water has already been shown to be a decreasing 

non-linear function of concentration for c in the range 0.5 to 5 mol/L. In the concentration 

range of the present work, which is on the order of mmol/L, the static permittivity so 

obtained shows a slight initial increase with concentration for both NaCl and NaNO3, while it 

shows an almost linear decrease with concentration for Na2SO4. The positive contribution to 

static permittivity at very low concentrations is represented by 1. The eventual decline in 
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Figure  3.5    Experimental data (symbols) and fitted (solid lines) semi-empirical model, 
(3.18), of static permittivity εdc with parameters listed in Table 3.7 for aqueous solutions of 

NaCl, NaNO3 and Na2SO4 at T = 25 °C. The error bars represent the calculated standard 
uncertainty based on the Monte Carlo method (Tables 3.3 to 3.5) and reflect a level of 

confidence of approximately 68 %. 

 

 

Figure  3.6    As for Figure 3.5 but for relaxation time, (3.19). 
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Figure  3.7    As for Figure 3.5 but for conductivity , (3.20), employing parameters listed in 
Table 3.6. The error bars that represent the calculated standard uncertainty (Tables 3.3 to 3.5) 

are too small to be visible in the figure. 

Table  3.6     Input quantities for calculation of the volume fraction and conductivity (3.20), of 
NaCl, NaNO3, and Na2SO4 solutions at 25 °C. Water density is   = 997.06 (g/L) at 25 °C 
[49]. The infinite molar conductivity values ∞ are taken from [50], and the values of non-

ideality coefficient B are calculated through the steps stated in [40]. 

ion M (g/mol) Λ∞ (m2S/mol) B (m3.5S/mol1.5) 
NaCl 58.4428 126.5×10-4 2.83×10-4 
NaNO3 84.9947 121.5×10-4 2.79×10-4 
Na2SO4 142.0421 260.2×10-4 19.2×10-4 

Table  3.7     Concentration, parameters of semi-empirical static permittivity model (3.18), 
and parameters of empirical relaxation time model (3.19) for aqueous NaCl, NaNO3, and 

Na2SO4 solutions at 25 °C. The standard uncertainties of the fitting parameters are calculated 
based on the covariance matrix method and provide a level of confidence of approximately 

68 %. 

ion c 
(mmol/L) 

1 
(L0.5/mol0.5) 

2 
(L/mol) 

3  

(L/mol) 
1 

 (ps) 
2 ×10-3 

(L/mol) 
NaCl 0-11.26 2.39 ± 0.40 122 ± 49 0.003 ± 0.003 0.21 ± 0.02 0.38 ± 0.11 
NaNO3 0-17.83 0.96 ± 0.49 31.3 ± 9.1  9.5 ± 4.1  0.125 ± 0.003 0.20 ± 0.08 
Na2SO4 0-12.45 0.101 ± 0.042 27 ± 10 11.8 ± 4.2 - 0.003 ± 0.001a 

 a For sodium sulphate data, linear fitting, i.e., τ̂(c) = τ0 - 2c is used. 
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static permittivity as concentration increases is represented by γ3. Likewise, the relaxation 

time τ of medium-sized ions (radii between 1.5 to 3 Å) of electrolyte NaCl, NaNO3, and 

Na2SO4 systems - the negative hydration effect - has been shown to decrease as 

concentration increases [51]. The resulting decrement in the relaxation time is characterized 

by 1. In addition, as concentration increases the slope of variation of the relaxation time 

which is described by exp(-2) becomes smaller. For electrolyte solutions with water as 

solvent, conductivity  is an increasing function of concentration [45]. According to (3.20), 

as concentration increases moderately, on the orders of a few mol/L, the conductivity 

variation becomes highly non-linear. Within the concentration range of this work the 

conductivity follows a linear relationship with concentration for NaCl, NaNO3, and Na2SO4 

solutions. 

The results shown in Figures 3.5 to 3.7 demonstrate useful trends in static permittivity 

εdc, relaxation time τ, and conductivity  as potential indicators of ion concentration and 

type. In a real system, multiple ion types and other contaminant species may be present [15]. 

To identify an ion and measure its concentration uniquely, therefore, requires judicious 

employment of the indicators. One possibility is to consider, simultaneously, three 

dimensions of data. Figure 3.8 shows a 3D trajectory plot of measured and fitted static 

permittivity εdc, relaxation time τ, and conductivity  data for NaCl, NaNO3, and Na2SO4 

solutions. In addition, 2D contour plots of each pair of fitting parameters τ- εdc, τ-, and εdc- 

are projected onto the corresponding planes. According to Figure 3.8, the 3D trajectory for 

each solution type is a unique curve in εdc-τ- space. The 3D trajectory plot shown in Figure 

3.8 suggests that the ion type and concentration of an unknown electrolyte solution can be 

found by measuring its dielectric spectrum, extracting εdc, τ, and  parameters, and mapping 
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Figure  3.8    3D trajectory plot mapped from extracted measured (symbols) and fitted (solid 
lines) static permittivity εdc, relaxation time τ, and conductivity  of NaCl, NaNO3 and 

Na2SO4 solutions at T = 25 °C. The 2D contour plots of each pair of fitted parameters are 
projected onto the corresponding planes for NaCl (dashed-dotted line), NaNO3 (solid line) 

and Na2SO4 (dashed line). For clarity, error bars that represent the standard uncertainty of the 
data (Tables 3.3 to 3.5) are not shown in this figure. 

these indicators to a benchmark data set from which the ion type and concentration can be 

inferred. A sensing system capable of identifying these and, potentially, other ions can be 

designed on the basis of measuring these fundamental indicators. 

3.7. Conclusion 

The dielectric spectra of agriculturally-relevant aqueous solutions of sodium chloride 

(NaCl), sodium nitrate (NaNO3), and sodium sulphate (Na2SO4) that are commonly found in 

water run-off were analyzed through well-controlled laboratory experiments. The extracted 
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static permittivity εdc, relaxation time τ, and conductivity  parameters were fitted within the 

defined low range of concentration, which is on the order of mmol/L, by using appropriate 

chemical-physical models. These parameters demonstrate useful trends as potential indicators 

of ion concentration and type. A method of judiciously exploiting the indicators, by means of 

3D trajectory plot, was proposed to uniquely identify an ion and infer its concentration. 

Assessment of measurement uncertainties, which comprise random and systematic errors and 

are particularly important in the context of low concentration aqueous solutions, was also 

conducted. The individual standard uncertainties include contributions from repeated 

measurements, deviation from a reference data (calibration uncertainty), and uncertainties 

associated with the reference data. It was shown that systematic errors, with relative standard 

uncertainties around or below 1 %, are the main contributor to the measurement uncertainty 

in both real ' and imaginary " permittivity values, and are far larger than the random errors 

whose relative standard uncertainties are around 0.1 %. Furthermore, covariance matrix and 

Monte Carlo methods were conducted to calculate the associated uncertainties of the 

extracted indicator parameters. The uncertainty values evaluated through the Monte Carlo 

method were found to be slightly higher than those evaluated through the covariance matrix 

method. The approximation nature of the Monte Carlo method in constructing the 

distribution function of individual sources of uncertainty by artificially generating random 

numbers, nevertheless, reduces the tediousness of analytical calculations associated with the 

covariance matrix method. 

This work lays a foundation upon which an electrical sensor can be designed for the 

efficient analysis of agricultural run-off. A method based upon dielectric spectroscopy can 

potentially address the need for a fast, real-time, field-deployable, and economically feasible 
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sensor, improving upon existing high-cost or non-durable monitoring systems. In ongoing 

research, the effect of temperature-dependence is being analyzed and the further development 

of the method for distinguishing between multiple ions present in a sample is being 

examined. 
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CHAPTER 4.    CONCENTRATION AND TEMPERATURE DEPENDENT MODELS 
OF DIELECTRIC SPECTRAL PARAMETERS FOR LOW-CONCENTRATION 

IONIC AQUEOUS SOLUTIONS 

Manuscript in preparation 

Amin Gorji1, 2, a and Nicola Bowler1, 2, 3, a 

 4.1. Abstract 

In this work, the complex relative permittivity of sodium chloride (NaCl), sodium 

nitrate (NaNO3), and sodium sulphate (Na2SO4) ionic aqueous solutions has been measured 

over frequency range from 200 MHz to 20 GHz for agriculturally-relevant low 

concentrations of 0 to 15 mmol/L at various temperatures between 5 °C and 30 °C. The 

measured spectra were fitted with a Debye relaxation model and conductivity was measured 

independently, to reduce uncertainty in obtaining other parameters by spectral fitting. The 

extracted fitting parameters including specific conductivity , static permittivity dc, and 

relaxation time τ have been fully parametrized as a function of concentration and 

temperature, based on comprehensive studies on physical chemistry and molecular dynamics 

present in low-concentration ionic aqueous systems. These models can be employed for a 

reasonable estimate of dielectric spectral features for any combination of agriculturally-

relevant concentration and temperature within the radio-frequency and microwave ranges.  

 4.2. Introduction 

High levels of contaminant ions, including sodium Na+, chloride Cl-, nitrate NO3
-, and 

sulphate SO4
2- which are mainly due to efflux from agricultural land, cause serious 

environmental and human-health related concerns. These ions are a major contributor to 
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hypoxic conditions in receiving waters, and are expensive to remove from drinking water [1]. 

Precise knowledge of dielectric properties of these ions dissolved in water is of considerable 

interest. In available studies of NaCl aqueous solution, Nörtemann et al. [2] determined 

complex relative permittivities for moderate concentrations c ~ 0.05 to 0.6 mol/L over 

combined frequency range f = 0.02 to 40 GHz by using multiple apparatus at temperature T = 

20 °C. Buchner et al. [3] studied solutions up to higher concentrations c ~ 0.1 to 5 mol/L 

over single-swept frequency range 0.2 to 20 GHz at more various temperatures of 5, 20, 25, 

35 °C. Levy et al. [4] extended the frequency range to 50 GHz for concentrations c ~ 0.1 to 1 

mol/L at room temperature T = 25 °C. Likewise the dielectric properties of NaNO3 aqueous 

solution have been reported by Lileev et al. [5] and Wachter et al. [6]. The former measured 

the permittivity of very high concentration samples c ~ 0.52 to 8.54 mol/L over five discrete 

frequencies between 7 to 25 GHz at different temperatures from 10 °C to 40 °C. The latter, 

however, covered a broad frequency range up to 89 GHz within concentration range c ~ 0.05 

to 1.5 mol/L at T = 25 °C. The dielectric spectroscopy measurements of Na2SO4 aqueous 

solution have been obtained by Barthel et al. [7] for concentrations c ~ 0.1 to 1 mol/L over a 

wide frequency range  0.95 to 89 GHz at T = 25 °C. In addition, Buchner et al. [8] studied the 

solutions within the same temperature and the frequency range for concentrations c ~ 0.025 

to 1.6 mol/L. 

Many of the previous studies, however, did not consider agriculturally-relevant 

concentration levels of NaCl, NaNO3, and Na2SO4 ionic aqueous solutions which are on the 

order of millimoles per liter in tile drainage waters [9]. In addition, concentration- and 

temperature-dependent parametric models of dielectric spectra and the associated fitting 

parameters have not been thoroughly investigated. In a recent study by Peyman et al. [10], 
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polynomial equations were derived for Debye (c < 0.5 mol/L) and Cole-Cole (c > 0.5 mol/L) 

fitting parameters relating each of the static permittivity dc, relaxation time τ (s), specific 

conductivity  (S/m), and distribution parameter  to the concentration and temperature of 

NaCl solutions in water. The measured results of their work at T = 20 °C for concentrations c 

~ 0.001 to 5 mol/L over frequency range f = 0.13 to 20 GHz were combined with literature 

data [2, 3, 11-14] to cover the same concentrations between 5 °C to 35 °C. In another study 

by Gulich et al. [15], they provided a set of 13 parameters which describe the frequency, 

temperature and concentration dependence of Cole-Davidson fitting parameters for aqueous 

solutions of NaCl and KCl. Their measurements were conducted for concentrations c ~ 0.001 

to 1 mol/L (0.001, 0.01, 0.1, 0.5, and 1 mol/L) over frequency range f = 0.1 to 40 GHz GHz 

at various temperatures from T = 10 °C to 60 °C. 

In this work, detailed analytical and semi-empirical concentration- and temperature-

dependent parametric models of Debye fitting parameters including specific conductivity , 

static permittivity dc, and relaxation time τ, accounting for physical chemistry and molecular 

dynamics for aqueous solutions of NaCl, NaNO3, and Na2SO4 have been developed.  In 

Section 4.3 the details of the experimental setup to perform broadband dielectric 

spectroscopy over the frequency range 200 MHz to 20 GHz at well-controlled temperatures 

from 5 °C to 30 °C for concentrations 0 to 15 mmol/L are presented. The data fitting 

procedure for extracting Debye parameters from the measured dielectric spectra is also 

explained in Section 4.3. Results of extracted fitting parameters and their associated 

uncertainties are presented in Section 4.4. Complete concentration- and temperature-

dependent models of specific conductivity , relaxation time τ, and static permittivity dc are 

given in Sections 4.5, 4.6, and 4.7, respectively. In Section 4.8, the 3D trajectory plots, as 
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proposed in Chapter 3 (Section 3.6), as a method of identifying an ion and its concentration 

based on extracted indicators from the dielectric spectra are given at each temperature. The 

chapter is drawn to conclusion in Section 4.9. 

 4.3. Measurement and Analysis 

4.3.1. Experimental Setup 

The experimental setup developed to measure the dielectric spectra of ionic aqueous 

solutions at various temperatures is shown in Figure 4.1. The details of the measurement 

instruments and the procedure are already explained in Chapter 3 (Section 3.3). In summary, 

dielectric experiments were performed using a Speag open-ended coaxial DAK3.5 Dielectric 

Probe Kit (200 MHz to 20 GHz recommended bandwidth) and Anritsu 37347C Vector 

Network Analyzer (VNA) (40 MHz to 20 GHz nominal bandwidth). In addition, the specific 

conductivity  was measured separately using a Seven2GoTM Conductivity meter with 

InLab720 probe (operating range 0.1 to 500 μS/cm ± 0.5 %). For concentrations of ionic 

solutions corresponding to specific conductivity greater than 500 S/cm, however,  was 

treated as an additional fitting parameter. The sample beaker was placed in a temperature-

controlled Anova R10 Refrigerated and Heating Circulator (± 0.01 °C) and the temperature 

held at various temperatures from 5 °C to 30 °C (5 °C interval) during this experiment. 

Dowtherm SR-1 Ethylene Glycol oil (18.1 Vol. %) was used as the bath fluid in order to 

minimize the influence of ambient temperature fluctuations. Three sets of agriculturally-

relevant ionic aqueous solutions were prepared and 8 concentrations c of each (including de-

ionized water as zero concentration) were tested: (i) sodium chloride (NaCl) solutions with 

concentration ranging from c = 0 to 10.28 mmol/L, (ii) sodium nitrate (NaNO3) solutions 

with c = 0 to 14.31 mmol/L, and (iii) sodium sulphate (Na2SO4) solutions with c = 0 to 11.36  
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Figure  4.1    Experimental setup for measuring the dielectric spectra and conductivity of an 
aqueous ionic solution at a controlled temperature. (a) Test tube containing high-concentrated 

stock solution, (b) Sample beaker containing diluted solutions.  

mmol/L. The samples were tested from lower to higher concentrations by successive titration 

(± 0.1 ml graduated pipette) of a pre-calculated volume of each stock ionic solution into a 

specified starting volume of deionized water. To reduce temperature perturbation in the 

sample beaker in every step stock solution was added, the stock solution was kept in a test 

tube located in the temperature bath to retain the same temperature as the sample beaker. 

4.3.2. Data Fitting 

The data fitting procedure of the measured dielectric spectra, i.e., polarization ε'(f) 

and energy dissipation ε"(f), by means of single-term Debye relaxation model was 

extensively addressed in Chapters 2 (Section 2.3.2) and 3 (Section 3.4). The extracted fitting 

parameters including specific conductivity , static permittivity dc, relaxation time τ, and 

infinite permittivity ∞ are given in the next section for a various range of concentrations and 

temperatures for NaCl, NaNO3, and Na2SO4 ionic aqueous solutions. 

The compilation of uncertainty components of ε'(f) and ε"(f) which comprise random 

and systematic errors was given in Chapter 3 (Section 3.5). The uncertainty of the fitting 

(a) (b) 
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parameters u(), u(εdc), u(τ), and u(ε∞), which return 68% confidence interval, was also 

calculated via Monte Carlo (MC) modeling described therein.  

4.4. Results 

The extracted Debye relaxation parameters along with the associated uncertainties for 

each of NaCl, NaNO3, and Na2SO4 aqueous solutions from 5 °C to 30 °C and different 

concentrations are listed in Tables 4.1 to 4.3. The fitting parameters presented in here provide 

a set of benchmark data for agriculturally-relevant aqueous solutions of NaCl, NaNO3, and 

Na2SO4. The fitted model is a single-term Debye relaxation function and provides the 

corresponding specific conductivity , static permittivity εdc, relaxation time τ, and infinite-

frequency permittivity ε∞. In the next three sections, concentration- and temperature-

dependent parametric models of Debye fitting parameters accounting for corresponding 

physical chemistry and molecular dynamics for aqueous solutions of NaCl, NaNO3, and 

Na2SO4 are constructed.  

4.5. Conductivity Modeling 

The procedure to calculate the specific conductivity  of general multivalent 

electrolyte system composed of ion species with electron valency z1 = y and z2 = -x for cation 

Ay+ and anion Bx-, respectively, has been conducted in Chapter 2 for dilute range of 

concentrations (~ mmol/L) and at a constant temperature based on Debye, Huckel, and 

Onsager (DHO) theory [16]. In this section, the theory is extended to include the 

temperature-dependence of specific conductivity. The analysis starts by defining 

temperature-dependent inverse Debye length κ0(T) (m-1) as 

  
 

 
2

2 2
0 1 22 10

0 d

A

Bc

e N
z zz zT

TT k


 
       (4.1) 
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Table  4.1     Specific conductivity (σ) and parameters of single-term Debye model (εdc, τ, and 
ε∞) for various concentrations (c) and temperatures (T) of aqueous NaCl solutions. The 
specific conductivity was measured directly up to 500 S/cm with ± 0.5 % instrument 

uncertainty. For concentrations corresponding to specific conductivity greater than 500 
S/cm, σ was treated as an additional fitting parameter. The standard uncertainties were 
calculated from Monte Carlo method and correspond to approximately 68 % confidence 

interval. 

σ (μS/cm) 
c (mmol/L) T = 5 °C T = 10 °C T = 15 °C T = 20 °C T = 25 °C T = 30 °C 
0 4.999 ± 0.025 5.787 ± 0.029 6.613 ± 0.033 7.420 ± 0.037 8.212 ± 0.041 9.025 ± 0.045 
0.294 ± 0.017 22.75 ± 0.11 25.91 ± 0.13 29.77 ± 0.15 33.22 ± 0.16 36.74 ± 0.18 40.04 ± 0.20 
0.585 ± 0.024 45.14 ± 0.23 51.70 ± 0.26 58.91 ± 0.29 66.10 ± 0.33 72.91 ± 0.36 79.92 ± 0.39 
0.988 ± 0.029 75.86 ± 0.38 86.63 ± 0.44 98.48 ± 0.49 110.57 ± 0.55 121.29 ± 0.61 134.38 ± 0.66 
1.834 ± 0.032 138.26 ± 0.70 160.44 ± 0.80 181.20 ± 0.91 205.9 ± 1.0 223.7 ± 1.1 246.4 ± 1.2 
3.514 ± 0.034 264.6 ± 1.3 305.3 ± 1.5 341.9 ± 1.7 390.7 ± 1.9 427.9 ± 2.1 466.7 ± 2.3 
5.653 ± 0.035 419.4 ± 2.1 487.9 ± 2.4 545.1 ± 8.4 614.0 ± 8.4 675.9 ± 8.4 746.0 ± 8.3 
8.595 ± 0.034 623.3 ± 8.9 744.1 ± 9.5 813.6 ± 9.5 901.8 ± 9.5 1020.9 ± 9.5 1097.4 ± 9.5 
10.275 ± 0.034 741.9 ± 9.4 862 ± 10 985 ± 10 1088 ± 10 1196 ± 10 1313 ± 10 

εdc 
0 85.830 ± 0.091 83.921 ± 0.089 82.053 ± 0.098 80.214 ± 0.088 78.362 ± 0.078 76.565 ± 0.085 
0.294 ± 0.017 85.84 ± 0.11 83.94 ± 0.11 82.065 ± 0.089 80.245 ± 0.098 78.380 ± 0.080 76.586 ± 0.085 
0.585 ± 0.024 85.81 ± 0.10 83.91 ± 0.10 82.081 ± 0.089 80.254 ± 0.085 78.404± 0.078 76.572 ± 0.085 
0.988 ± 0.029 85.821 ± 0.098 83.913 ± 0.095 82.071 ± 0.096 80.256 ± 0.079 78.443 ± 0.079 76.640 ± 0.091 
1.834 ± 0.032 85.808 ± 0.081 83.916 ± 0.079 82.064 ± 0.079 80.238 ± 0.083 78.437 ± 0.078 76.615 ± 0.091 
3.514 ± 0.034 85.781 ± 0.082 83.897 ± 0.081 82.040 ± 0.096 80.266 ± 0.093 78.378 ± 0.079 76.572 ± 0.079 
5.653 ± 0.035 85.715 ± 0.083 83.815 ± 0.081 81.995 ± 0.083 80.179 ± 0.091 78.357 ± 0.078 76.553 ± 0.086 
8.595 ± 0.034 85.66 ± 0.11 83.78 ± 0.10 81.922 ± 0.095 80.151 ± 0.088 78.339 ± 0.078 76.496 ± 0.092 
10.275 ± 0.034 85.62 ± 0.10 83.73 ± 0.10 81.906 ± 0.094 80.112 ± 0.087 78.305 ± 0.080 76.487 ± 0.094 

τ (ps) 
0 14.910 ± 0.076 12.681 ± 0.064 10.833 ± 0.061 9.365 ± 0.046 8.275 ± 0.047 7.284 ± 0.048 
0.294 ± 0.017 14.902 ± 0.086 12.670 ± 0.073 10.821 ± 0.067 9.355 ± 0.050 8.260 ± 0.047 7.267 ± 0.046 
0.585 ± 0.024 14.902 ± 0.081 12.655 ± 0.069 10.818 ± 0.064 9.333 ± 0.040 8.252 ± 0.047 7.262 ± 0.051 
0.988 ± 0.029 14.900 ± 0.091 12.643 ± 0.077 10.798 ± 0.054 9.338 ± 0.048 8.182 ± 0.046 7.245 ± 0.048 
1.834 ± 0.032 14.871 ± 0.082 12.644 ± 0.070 10.790 ± 0.059 9.311 ± 0.043 8.176 ± 0.046 7.220 ± 0.050 
3.514 ± 0.034 14.834 ± 0.075 12.619 ± 0.063 10.745 ± 0.056 9.287 ± 0.039 8.129 ± 0.046 7.176 ± 0.045 
5.653 ± 0.035 14.783 ± 0.087 12.596 ± 0.074 10.730 ± 0.055 9.270 ± 0.042 8.085 ± 0.045 7.145 ± 0.044 
8.595 ± 0.034 14.754 ± 0.076 12.567 ± 0.065 10.682 ± 0.067 9.228 ± 0.043 8.084 ± 0.046 7.121 ± 0.046 
10.275 ± 0.034 14.752 ± 0.097 12.528 ± 0.082 10.674 ± 0.065 9.210 ± 0.047 8.066 ± 0.046 7.098 ± 0.044 

ε∞ 
0 5.70 ± 0.20 5.53 ± 0.19 6.03 ± 0.27 5.63 ± 0.25 5.24 ± 0.16 5.22 ± 0.23 
0.294 ± 0.017 5.70 ± 0.39 5.49 ± 0.38 5.99 ± 0.40 5.55 ± 0.25 5.06 ± 0.17 5.03 ± 0.28 
0.585 ± 0.024 5.67 ± 0.26 5.46 ± 0.25 5.95 ± 0.25 5.43 ± 0.20 4.84 ± 0.16 4.98 ± 0.26 
0.988 ± 0.029 5.63 ± 0.38 5.42 ± 0.37 5.92 ± 0.32 5.44 ± 0.30 4.11 ± 0.16 4.80 ± 0.26 
1.834 ± 0.032 5.59 ± 0.39 5.42 ± 0.38 5.94 ± 0.46 5.29 ± 0.34 3.96 ± 0.16 4.52 ± 0.30 
3.514 ± 0.034 5.55 ± 0.38 5.36 ± 0.37 5.88 ± 0.53 5.22 ± 0.36 3.49 ± 0.16 3.97 ± 0.33 
5.653 ± 0.035 5.47 ± 0.43 5.44 ± 0.42 5.97 ± 0.38 5.37 ± 0.28 3.07 ± 0.15 3.53 ± 0.24 
8.595 ± 0.034 5.36 ± 0.34 5.34 ± 0.34 5.95 ± 0.54 5.04 ± 0.32 2.83 ± 0.15 3.15 ± 0.19 
10.275 ± 0.034 5.34 ± 0.50 5.30 ± 0.50 5.95 ± 0.50 5.02 ± 0.42 2.68 ± 0.17 2.65 ± 0.29 
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Table  4.2     As for Table 4.1 but for aqueous NaNO3 solutions. 

σ (μS/cm) 
c (mmol/L) T = 5 °C T = 10 °C T = 15 °C T = 20 °C T = 25 °C T = 30 °C 
0 4.940 ± 0.025 5.787 ± 0.029 6.639 ± 0.033 7.490 ± 0.037 8.338 ± 0.042 9.118 ± 0.046 
0.743 ± 0.043 55.83 ± 0.28 64.06 ± 0.32 71.77 ± 0.36 79.71 ± 0.40 88.01 ± 0.44 96.79 ± 0.48 
1.479 ± 0.060 109.45 ± 0.55 125.57 ± 0.63 141.54 ± 0.71 158.35 ± 0.80 173.98 ± 0.87 190.86 ± 0.95 
2.788 ± 0.072 204.0 ± 1.0 235.6 ± 1.2 266.2 ± 1.3 298.3 ± 1.5 327.8 ± 1.6 358.6 ± 1.8 
3.934 ± 0.082 285.3 ± 1.4 329.3 ± 1.7 370.9 ± 1.9 411.9 ± 2.1 457.0 ± 2.3 496.8 ± 2.5 
5.483 ± 0.090 403.6 ± 2.0 456.5 ± 2.3 516.8 ± 8.0 569.1 ± 8.1 628.2 ± 8.1 668.3 ± 8.1 
8.895 ± 0.095 645.2 ± 8.8 726.7 ± 9.5 817.7 ± 9.5 924 ± 10 1016.5 ± 9.7 1111.0 ± 9.7 
11.521 ± 0.099 819.0 ± 8.7 933 ± 11 1056 ± 11 1184 ± 11 1275 ± 11 14.17 ± 11 
14.31 ± 0.10 995 ± 11 1137 ± 13 1262 ± 13 1446 ± 13 1578 ± 13 1718 ± 13 

εdc 
0 85.830 ± 0.099 83.921 ± 0.097 82.053 ± 0.081 80.214 ± 0.080 78.363 ± 0.079 76.565 ± 0.081 
0.743 ± 0.043 85.840 ± 0.083 83.910 ± 0.081 82.041 ± 0.079 80.202 ± 0.079 78.351 ± 0.077 76.572 ± 0.079 
1.479 ± 0.060 85.803 ± 0.098 83.899 ± 0.096 82.021 ± 0.087 80.193 ± 0.077 78.343 ± 0.076 76.557 ± 0.083 
2.788 ± 0.072 85.757 ± 0.099 83.851 ± 0.097 81.998 ± 0.079 80.175 ± 0.087 78.327 ± 0.076 76.514 ± 0.084 
3.934 ± 0.082 85.72 ± 0.10 83.841 ± 0.097 81.979 ± 0.093 80.157 ± 0.082 78.299 ± 0.078 76.512 ± 0.091 
5.483 ± 0.090 85.683 ± 0.088 83.772 ± 0.086 81.926 ± 0.079 80.091 ± 0.087 78.280 ± 0.078 76.469 ± 0.088 
8.895 ± 0.095 85.562 ± 0.085 83.671 ± 0.083 81.833 ± 0.080 80.00 ± 0.10 78.242 ± 0.080 76.376 ± 0.096 
11.521 ± 0.099 85.48 ± 0.11 83.60 ± 0.11 81.765 ± 0.091 79.916 ± 0.097 78.149 ± 0.081 76.281 ± 0.099 
14.31 ± 0.10 85.39 ± 0.11 83.51 ± 0.11 81.690 ± 0.092 79.857 ± 0.090 78.013 ± 0.080 76.228 ± 0.086 

τ (ps) 
0 14.910 ± 0.089 12.681 ± 0.076 10.833 ± 0.056 9.365 ± 0.041 8.268 ± 0.047 7.284 ± 0.048 
0.743 ± 0.043 14.901 ± 0.092 12.669 ± 0.078 10.819 ± 0.066 9.354 ± 0.044 8.257 ± 0.046 7.266 ± 0.044 
1.479 ± 0.060 14.888 ± 0.072 12.651 ± 0.061 10.798 ± 0.055 9.357 ± 0.036 8.241 ± 0.046 7.246 ± 0.046 
2.788 ± 0.072 14.875 ± 0.075 12.647 ± 0.064 10.790 ± 0.057 9.330 ± 0.040 8.227 ± 0.046 7.211 ± 0.046 
3.934 ± 0.082 14.858 ± 0.098 12.632 ± 0.083 10.770 ± 0.062 9.319 ± 0.038 8.211 ± 0.046 7.201 ± 0.050 
5.483 ± 0.090 14.837 ± 0.082 12.612 ± 0.069 10.759 ± 0.061 9.295 ± 0.044 8.190 ± 0.046 7.197 ± 0.048 
8.895 ± 0.095 14.802 ± 0.088 12.581 ± 0.074 10.738 ± 0.069 9.283 ± 0.039 8.163 ± 0.047 7.165 ± 0.045 
11.521 ± 0.099 14.786 ± 0.093 12.573 ± 0.079 10.717 ± 0.066 9.269 ± 0.052 8.162 ± 0.047 7.151 ± 0.049 
14.31 ± 0.10 14.785 ± 0.082 12.564 ± 0.070 10.713 ± 0.057 9.266 ± 0.042 8.163 ± 0.047 7.152 ± 0.045 

ε∞ 
0 5.70 ± 0.30 5.53 ± 0.29 6.03 ± 0.37 5.63 ± 0.22 5.19 ± 0.17 5.22 ± 0.19 
0.743 ± 0.043 5.66 ± 0.18 5.49 ± 0.18 5.99 ± 0.34 5.59 ± 0.21 5.09 ± 0.15 5.14 ± 0.18 
1.479 ± 0.060 5.62 ± 0.19 5.45 ± 0.19 6.02 ± 0.25 5.42 ± 0.25 4.95 ± 0.15 4.97 ± 0.17 
2.788 ± 0.072 5.62 ± 0.37 5.43 ± 0.35 5.98 ± 0.33 5.52 ± 0.22 4.75 ± 0.15 4.98 ± 0.12 
3.934 ± 0.082 5.58 ± 0.32 5.41 ± 0.31 6.02 ± 0.22 5.49 ± 0.25 4.63 ± 0.16 5.01 ± 0.12 
5.483 ± 0.090 5.53 ± 0.42 5.37 ± 0.40 5.94 ± 0.28 5.59 ± 0.31 4.41 ± 0.16 4.78 ± 0.10 
8.895 ± 0.095 5.53 ± 0.42 5.38 ± 040 5.95 ± 0.37 5.47 ± 0.39 4.14 ± 0.17 4.75 ± 0.10 
11.521 ± 0.099 5.54 ± 0.25 5.36 ± 0.24 5.98 ± 0.25 5.40 ± 0.24 4.16 ± 0.17 4.69 ± 0.11 
14.31 ± 0.10 5.00 ± 0.51 5.33 ± 0.49 6.00 ± 0.39 5.38 ± 0.24 4.31 ± 0.18 4.71 ± 0.10 
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Table  4.3     As for Table 4.1 but for aqueous Na2SO4 solutions. 

σ (μS/cm) 
c (mmol/L) T = 5 °C T = 10 °C T = 15 °C T = 20 °C T = 25 °C T = 30 °C 
0 4.962 ± 0.025 5.777 ± 0.029 6.688 ± 0.033 7.445 ± 0.037 8.264 ± 0.041 9.139 ± 0.046 
0.325 ± 0.019 49.11 ± 0.25 57.14 ± 0.29 65.29 ± 0.33 73.03 ± 0.37 80.69 ± 0.40 88.97 ± 0.44 
0.647 ± 0.026 95.50 ± 0.48 111.60 ± 0.56 128.76 ± 0.64 142.86 ± 0.71 157.44 ± 0.79 174.16 ± 0.87 
1.092 ± 0.032 158.49 ± 0.80 185.38 ± 0.93 209.4 ± 1.1 236.6 ± 1.1 260.7 ± 1.3 287.4 ± 1.4 
2.028 ± 0.036 286.7 ± 1.4 339.4 ± 1.7 380.2 ± 1.9 424.4 ± 2.1 470.8 ± 2.4 517.3 ± 7.5 
3.886 ± 0.038 524.2 ± 7.3 610.0 ± 9.3 682.5 ± 9.3 787.3 ± 9.3 853.0 ± 9.3 947.1 ± 9.3 
6.250 ± 0.038 800.0 ± 9.2 922 ± 11 1084 ± 11 1214 ± 11 1343 ± 11 1442 ± 11 
9.504 ± 0.037 1168 ± 11 1381 ± 13 1561 ± 13 1719 ± 13 1893 ± 13 2107 ± 13 
11.360 ± 0.038 1372 ± 12 1585 ± 15 1770 ± 15 2036 ± 15 2250 ± 15 2426 ± 15 

εdc 
0 85.83 ± 0.10 83.921 ± 0.098 82.053 ± 0.083 80.214 ± 0.081 78.362 ± 0.078 76.565 ± 0.082 
0.325 ± 0.019 85.81 ± 0.11 83.90 ± 0.11 82.022 ± 0.083 80.189 ± 0.087 78.351 ± 0.082 76.556 ± 0.088 
0.647 ± 0.026 85.805 ± 0.094 83.890 ± 0.092 82.047 ± 0.096 80.150 ± 0.090 78.344 ± 0.078 76.547 ± 0.082 
1.092 ± 0.032 85.796 ± 0.082 83.876 ± 0.080 82.001 ± 0.079 80.151 ± 0.089 78.319 ± 0.078 76.523 ± 0.090 
2.028 ± 0.036 85.745 ± 0.083 83.830 ± 0.081 82.019 ± 0.084 80.135 ± 0.080 78.275 ± 0.078 76.482 ± 0.079 
3.886 ± 0.038 85.65 ± 0.10 83.75 ± 0.10 82.146 ± 0.092 80.029 ± 0.082 78.192 ± 0.078 76.424 ± 0.085 
6.250 ± 0.038 85.54 ± 0.11 83.64 ± 0.10 81.764 ± 0.080 79.957 ± 0.097 78.118 ± 0.079 76.348 ± 0.099 
9.504 ± 0.037 85.380 ± 0.096 83.519 ± 0.094 81.577 ± 0.087 79.836 ± 0.089 77.992 ± 0.077 76.228 ± 0.089 
11.360 ± 0.038 85.296 ± 0.090 83.461 ± 0.088 81.534 ± 0.077 79.756 ± 0.078 77.905 ± 0.076 76.166 ± 0.089 

τ (ps) 
0 14.910 ± 0.075 12.681 ± 0.064 10.833 ± 0.055 9.365 ± 0.045 8.276 ± 0.047 7.284 ± 0.047 
0.325 ± 0.019 14.918 ± 0.096 12.679 ± 0.081 10.833 ± 0.066 9.352 ± 0.048 8.272 ± 0.048 7.277 ± 0.055 
0.647 ± 0.026 14.898 ± 0.079 12.667 ± 0.067 10.833 ± 0.057 9.356 ± 0.046 8.272 ± 0.047 7.277 ± 0.048 
1.092 ± 0.032 14.899 ± 0.081 12.683 ± 0.069 10.829 ± 0.061 9.337 ± 0.040 8.272 ± 0.047 7.270 ± 0.047 
2.028 ± 0.036 14.890 ± 0.088 12.665 ± 0.075 10.825 ± 0.057 9.345 ± 0.043 8.266 ± 0.047 7.266 ± 0.045 
3.886 ± 0.038 14.887 ± 0.081 12.663 ± 0.069 10.815 ± 0.059 9.364 ± 0.052 8.266 ± 0.047 7.256 ± 0.045 
6.250 ± 0.038 14.886 ± 0.095 12.630 ± 0.081 10.817 ± 0.055 9.331 ± 0.041 8.245 ± 0.047 7.243 ± 0.050 
9.504 ± 0.037 14.853 ± 0.087 12.635 ± 0.074 10.800 ± 0.057 9.322 ± 0.045 8.248 ± 0.047 7.238 ± 0.045 
11.360 ± 0.038 14.860 ± 0.085 12.646 ± 0.073 10.806 ± 0.060 9.314 ± 0.042 8.243 ± 0.046 7.233 ± 0.049 

ε∞ 
0 5.70 ± 0.19 5.53 ± 0.19 6.03 ± 0.23 5.63 ± 0.18 5.26 ± 0.16 5.22 ± 0.19 
0.325 ± 0.019 5.68 ± 0.41 5.49 ± 0.40  6.01 ± 0.37 5.66 ± 0.29 5.17 ± 0.19 5.11 ± 0.27 
0.647 ± 0.026 5.66 ± 0.25 5.44 ± 0.24 5.99 ± 0.28 5.76 ± 0.27 5.18 ± 0.17 5.03 ± 0.23 
1.092 ± 0.032 5.61 ± 0.32 5.45 ± 0.31 5.95 ± 0.35 5.69 ± 0.27 5.20 ± 0.16 4.88 ± 0.24 
2.028 ± 0.036 5.59 ± 0.27 5.40 ± 0.26 5.93 ± 0.23 5.63 ± 0.21 5.21 ± 0.16 4.81 ± 0.25 
3.886 ± 0.038 5.57 ± 0.25 5.39 ± 0.24 5.84 ± 0.26 6.29 ± 0.32 5.25 ± 0.16 4.55 ± 0.20 
6.250 ± 0.038 5.56 ± 0.32 5.35 ± 031 5.98 ± 0.38 6.70 ± 0.23 5.16 ± 0.17 4.45 ± 0.20 
9.504 ± 0.037 5.74 ± 0.31 5.39 ± 0.29 5.96 ± 0.29 6.50 ± 0.20 4.94 ± 0.15 4.43 ± 0.18 
11.360 ± 0.038 5.96 ± 0.31 5.36 ± 0.28 5.92 ± 0.23 6.21 ± 0.31 4.90 ± 0.15 4.27 ± 0.18 
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where temperature T is in kelvin, e = 1.6010-19 C is the elementary charge, NA = 6.021023 

mol-1 is Avogadro’s number, kB = 1.3810-23 J/K is the Boltzmann constant, ε0 = 8.8510-12 

F/m is the free space permittivity, and ε0dc(T) is the temperature-dependent static permittivity 

of deionized water (zero concentration) which will be later modeled in Section 4.6.1. Next, 

the electrophoretic coefficient, a(T)  (m3.5S/mol1.5), and the asymmetric relaxation 

coefficient, b(T)  (m3.5S/mol1.5) can be written as a function of temperature 

  
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 (4.3) 

where F = 96,485.33 C/mol is the Faraday constant. The temperature-dependent dynamic 

viscosity of water (T) (kg m-1s-1), within the temperature range 273 K < T < 373 K, can be 

modeled by Vogel’s equation [17] as 

  5 578.9192.426 10 exp
137.546

T
T

        
                                      (4.4) 

and the temperature-dependent ionic conductivities at infinite dilution of cation 1(T) 

(m2S/mol) and anion 2(T) (m2S/mol) can be modeled as a linear function from the data 

provided for discrete temperatures in [18]. The linear functions of ion constituents for NaCl 

Table  4.4     Linear model of cation 1(T) and anion 2(T) conductivities at infinite dilution 
for NaCl and NaNO3 aqueous solutions with z1 = 1 and z2 = -1, and Na2SO4 aqueous solution 

with z1 = 1 and z2 = -2. Ionic conductivity values are taken from [18]. 

 λ1(T) ×104 (m2S/mol) λ2(T) ×104 (m2S/mol) 
NaCl (1.001 ± 0.018)(T - 273) + (25.06 ± 0.35) (1.411 ± 0.008)(T - 273) + (41.11 ± 0.16) 
NaNO3  (1.001 ± 0.018)(T - 273) + (25.06 ± 0.35) (1.230 ± 0.004)(T - 273) + (40.345 ± 0.079) 
Na2SO4  (1.001 ± 0.018)(T - 273) + (25.06 ± 0.35) (3.123 ± 0.003)(T - 273) + (81.940 ± 0.068) 
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(Na+ and Cl-), NaNO3 (Na+ and NO3
-), and Na2SO4 (Na+ and SO4

2-) electrolyte systems are 

shown in Table 4.4. 

The temperature-dependent infinite molar conductivity of the whole system at infinite 

dilution, ∞(T)  (m2S/mol), is then calculated as 

      12 1 2z zT T T      (4.5) 

The temperature- and concentration-d-ependent molar conductivity of the whole 

system, (T, c) (m2S/mol), can be calculated from (4.1) to (4.5) as 

          310, ca bT c T T T     (4.6) 

where c (mol/L) is the concentration of the whole solute. The temperature- and 

concentration-dependent specific conductivity σ(T, c) (S/m) of the solution can be readily 

expressed by multiplying the solute concentration c and the molar conductivity  for each 

electrolyte system, as 

      310, ,cT c T c    (4.7) 

The measured specific conductivities σ and the analytical values calculated from (4.7) 

at different temperatures and concentrations for NaCl, NaNO3, and Na2SO4 aqueous solutions 

are shown in Figure 4.2. 

According to Figure 4.2, the specific conductivity increases with increasing the 

temperature. This is because ions which are responsible for the flowing capability of the 

electrical current become more agile with rising the temperature, therefore, their mobility in 

the solution increases. As the electrical current is carried by the ions in aqueous solutions 

solution, it would be expected that the specific conductivity is strictly proportional to the 

number of ions, i.e., concentration. Within the range of dilute concentrations (< 0.01 mol/L) 
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the conductivity follows nearly a linear relationship with concentration, as observed for all 

solutions in Figure 4.2. As concentration increases moderately, on the orders of a few mol/L, 

the interaction between ions, represented through the electrophoretic and asymmetric 

relaxation effects [16], is more pronounced. As a result, the variation of specific conductivity 

with concentration becomes highly non-linear and decreases considerably. 

The surface plots demonstrating the specific conductivity (4.7) as a function of 

concentration and temperature, along with the measured data (Tables 4.1 to 4.3) for NaCl, 

NaNO3 and Na2SO4 aqueous solutions are shown in Figure 4.3. 

4.6. Relaxation Time Modeling 

4.6.1. Temperature Dependence of Deionized Water 

To develop a model for the relaxation time of ionic aqueous solutions as a function of 

temperature and concentration, it is first needed to understand the physical chemistry 

mechanisms behind the temperature dependence of the relaxation time of deionized water 

(i.e. zero concentration solution). In water system, water molecules form an almost 

tetrahedrally structured hydrogen-bond (H-bond) network with neighboring molecules. The 

dominant relaxation process in water centered on ~ 11 to 22 GHz at temperatures 5 to 30 °C 

[19] is generally attributed to the reorientation of hydrogen-bonded water molecules. 

Reorientation of a water molecule is possible only when a sufficient amount of 

hydrogen bonds is broken [20, 21]. The threshold energy required for a complete separation 

of a water molecule from neighboring H-bonds and thus making it to reorient, commonly 

known as Arrhenius activation energy Ea, can be obtained from the empirical Arrhenius 

equation as 
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Figure  4.2    Experimental data (symbols), Tables 4.1 to 4.3, and analytical model (solid 
lines), (4.7), of specific conductivity  for aqueous solutions of NaCl, NaNO3, and Na2SO4 at 

(a) 5 °C, (b) 10 °C, (c) 15 °C, (d) 20 °C, (e) 25 °C, and (f) 30 °C. The error bars that 
represent the calculated standard uncertainty (Tables 4.1 to 4.3) are too small to be visible in 

the figures. 

 

co
nd

uc
tiv

ity
 (

S
/c

m
)

co
nd

uc
tiv

ity
 (

S
/c

m
)

co
nd

uc
tiv

ity
 (

S
/c

m
)

co
nd

uc
tiv

ity
 (

S
/c

m
)

co
nd

uc
tiv

ity
 (

S
/c

m
)

co
nd

uc
tiv

ity
 (

S
/c

m
)

(a) (b) 

(c) (d) 

(e) (f) 



www.manaraa.com

104 

 

 

 

Figure  4.3    Surface plot of specific conductivity (4.7) and experimental data (Tables 4.1 to 
4.3) for aqueous solutions of (a) NaCl, (b) NaNO3, and (c) Na2SO4. The 2D contour plots of 

-vs-c and -vs-T are also projected onto the corresponding planes.  

(a) 

(b) 

(c) 

T 
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  0 exp aEAT
RT

    
 

  (4.8) 

where τ0(T) (s) is the relaxation time of deionized water (zero concentration), A is the pre-

exponential factor, R = 8.3145 J mol-1 K-1 is the universal gas constant, and temperature T is 

in kelvin. The number of H-bonds connected to a water molecule that needs to be broken for 

the reorientation of water, however, vary from single bond at high temperature to four bonds 

in deeply super-cooled water [22]. This implies that the activation energy Ea is expected to be 

temperature-dependent for water system as such the energy required to break the H-bonds 

increases with lowering the temperature. The activation energy Ea calculated from the slope 

of logarithmic-Arrhenius equation Ea = (R/A) dln(τ0)/d(1/T) increases roughly from 18.4 

kJ/mol at ~ 30 °C (303 K) to 21.8 kJ/mol at ~ 5 °C (278 K) [22]. As a result the relaxation 

time cannot be adequately fitted by an Arrhenius equation with temperature-independent 

parameters.  

Taking the fact that the number of H-bonds which must be broken to obtain mobile 

water molecules which are capable to reorient with the applied electric field depends on 

Table  4.5     Eyring fitting parameters for the temperature-dependent model of relaxation 
time τ0(T), (4.9), of deionized water, various authors. The uncertainties represent the 

standard uncertainty and reflect a level of confidence of approximately 68 %.  The sum of 
squared errors (sse) of the fit corresponding to values calculated by each author is shown. 

Also see Figure 4.4 for plots representing Arrhenius, (4.8), and Eyring, (4.9), equations as a 
function of temperature.  

 T  
(°C) 

H#
298  

(kJ mol-1) 
S#

298  
(J K-1 mol-1) 

c#
p  

(J K-1 mol-1) 
sse 

Buchner et al. [19] 0.35-35.15 15.9 ± 0.2 20.4 ± 0.7 -160 ± 22 0.011 
Loginova et al. [23] 10-40 17.1 24.8 - - 
This work 5-30 16.27 ± 0.41 21.9 ± 1.4 -172.6 ± 40 0.004 
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Figure  4.4    Relaxation time τ0, data (symbols), Arrhenius (4.8), and Eyring (4.9) fitting 
equations of deionized water as a function of temperature T. The Eyring equation can better 

predict the relaxation time at higher temperatures than the Arrhenius equation. 

temperature, Barthel et al. [24] proposed that the relaxation time can be modeled by Eyring’s 

approach originating from the transition state theory [25] as  

    0
#

exp
B

h G TT k T RT
     

  (4.9) 

with temperature-dependent modified Gibbs free energy of activation, G#
 (J mol-1), as 

    # # # # #
298 298 ln298

298p p
TG H c T S cTT            

 
  (4.10) 

where H#
298 (J mol-1), S#

298 (J K-1 mol-1), and c#
p (J K-1 mol-1) are the standard enthalpy of 

activation, standard entropy of activation, and the standard heat capacity of water, h = 

6.2610-34 m2kg/s  is the Planck constant, and kB = 1.3810-23 J/K  is the Boltzmann 

constant. 
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The experimental relaxation times of deionized water (c = 0) as listed in Table 4.1 for 

temperature range from 5 °C to 30 °C are fitted using the Eyring equation (4.9). The Eyring 

fitting parameters are shown in Table 4.5. The resulting plot is also depicted in Figure 4.4. 

4.6.2. Temperature Dependence of Ionic Aqueous Solutions 

The concentration-dependent empirical model of relaxation time at a constant 

temperature was proposed by Chen et al. [26] (Also see Chapter 1). In this section the model 

is developed to include the temperature dependence of the relaxation time for NaCl, NaNO3 

and Na2SO4 aqueous solutions within the range of concentrations and temperatures studied in 

this work. The concentration-dependent relaxation time τ(c) (s) at each temperature can be 

modeled as 

      0
1 2 1exp cc         (4.11) 

where 1 (s) and 2 (L/mol) are adjustable fitting parameters extracted through the fitting 

procedure at each temperature. The experimental relaxation times of NaCl, NaNO3 and 

Na2SO4 aqueous solutions as listed in Tables 4.1 to 4.3 were fitted using (4.11) at each 

temperature (5 °C to 30 °C) and the fitting parameters 1 and 2 were calculated as in Table 

4.6. The resulting plots are also depicted in Figure 4.5.   

The relaxation time of medium-sized ions (radii between 1.5 to 3 Å) of NaCl, NaNO3, 

and Na2SO4 aqueous solutions - the negative hydration effect – has been shown to decrease 

as concentration increases [27]. In general, this is equivalent to an increase in the percentage 

of bonds broken when ions are added to water. Therefore, the freedom of orientation of water 

molecules under the applied electric field increases which results in faster reorientations (i.e. 

smaller relaxation times). The resulting decrement in the relaxation time, characterized by 1, 

follows the trend NaCl > NaNO3 > Na2SO4 at various temperatures. The difference in 
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relaxation times due to ions has been attributed under structure maker and structure breaker 

effects [6, 27]. The structure-maker ions are small or highly charged ions, e.g. SO4
2- with 

electron valency z2 = 2, which can force water molecules beyond the hydration layer to all 

orient toward the ion. These ions exhibit stronger forces with water molecules than the 

neighboring H-bond forces so the reorientation of water molecules becomes slower (i.e. less 

decrease in relaxation time). On the other hand, the structure-breaker ions are large ions 

which do not have a strong enough force to orient water molecules beyond the hydration 

layer. This effect which is more pronounced for larger ions exhibits weaker interactions with 

water molecules than the neighboring H-bond forces so the water molecules can reorient 

faster (i.e. more decrease in relaxation time). The ionic radius of Cl-, i.e., 184 pm, is greater 

than the ionic radius of NO3
-, i.e., 179pm [28], thus, the decrement in relaxation time for Cl- 

system is larger than NO3
- system. 

As temperature increases, the weaker drop in relaxation time with concentration is 

observed (i.e. 1 decreases) for NaCl, NaNO3, and Na2SO4 aqueous solutions. This is 

because the hydrogen bonds needed to be broken for the reorientation of water molecule has 

been already ruptured by the elevated temperature [23]. Likewise, as temperature increases 

the slope of variation of the relaxation time which is described by exp(-2) becomes smaller. 

Considering the range of uncertainties associated with 1 and 2 (Table 4.6) for 

various temperatures, the temperature dependence of these parameters can be best modeled 

by a linear behavior. By employing (4.9) and (4.10) in (4.11), the complete temperature- and 

concentration-dependent model of the relaxation time τ(c, T) for NaCl, NaNO3, and Na2SO4 

aqueous solutions can be obtained as 
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      

   

1 2

# # # #
298 298

1

ˆ ˆexp,

ln298 ˆ              exp 298p p

B

cT c T T

Th H c T S cT Tk T
RT

  



 

                    

 (4.12) 

where  ̂1(T) and ̂2(T) are the temperature-dependent linear functions calculated for 1 and 

2 (Table 4.6), respectively, and are given in Table 4.7. Eyring fitting parameters H#
298 (J 

mol-1), S#
298 (J K-1 mol-1), and c#

p (J K-1 mol-1) are also listed in the table (taken from Table 

4.5). 

The surface plots demonstrating the relaxation time (4.12) as a function of 

concentration and temperature, along with the measured data (Tables 4.1 to 4.3) for NaCl, 

NaNO3 and Na2SO4 aqueous solutions are shown in Figure 4.6. The required parameters to 

fully describe the model for each ionic aqueous solution are listed in Table 4.7. The sum of 

squared errors (sse) of the surface-plot fits (4.12) and the measured data are also given in 

Table 4.7. 

Table  4.6     Parameters of empirical relaxation time model, (4.11), of aqueous NaCl (c = 0 to 
10.275 mmol/L), NaNO3 (c = 0 to 14.31 mmol/L), and Na2SO4 (c = 0 to 11.36 mmol/L) 
solutions for discrete temperatures from 5 °C to 30 °C. The relaxation time of deionized 

water τ0 at each temperature is taken from Table 4.1. The standard uncertainties of the fitting 
parameters were calculated based on Monte Carlo method and provide a level of confidence 

of approximately 68 %. 

NaCl  
T (°C) 5 10 15 20 25 30 
1 (ps) 0.263  

± 0.093 
0.221  

± 0.073 
0.208 

 ± 0.063 
0.187  

± 0.063 
0.208  

± 0.025 
0.206 

 ± 0.047 
2 (L/mol) 100  ± 44 95  ± 40 140  ± 55 152  ± 71 382  ± 110 204  ± 89 

NaNO3 
1 (ps) 0.178  

± 0.062 
0.150  

± 0.049 
0.136  

± 0.042 
0.127  

± 0.041 
0.122  

± 0.035 
0.139  

± 0.036 
2 (L/mol) 95  ± 43 111  ± 47 152  ± 71 116  ± 52 170  ± 79 222  ± 93 

Na2SO4 
1 (ps) 0.082  

± 0.039 
0.049  

± 0.020 
0.043  

± 0.022 
0.061  

± 0.024 
0.042 

 ± 0.021 
0.056 

 ± 0.021 
2 (L/mol) 90  ± 51 187  ± 94 107  ± 57 131  ± 60 131  ± 58 197  ± 89 
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Table  4.7     Parameters of temperature- and concentration-dependent relaxation time model, 
(4.12), for aqueous NaCl (c = 0 to 10.275 mmol/L), NaNO3 (c = 0 to 14.31 mmol/L), and 

Na2SO4 (c = 0 to 11.36 mmol/L) solutions. The standard uncertainties of the fitting 
parameters were calculated based on Monte Carlo method and provide a level of confidence 

of approximately 68 %. The sum of squared errors (sse) of the surface-plot fits and the 
measured data are also shown. 

 ̂1(T) (ps)  ̂2(T) (L/mol) H#
298  

 
S#

298  
 

c#
p  

 
sse 

NaCl (-0.0012 ± 0.0010 )(T - 273)  
+ (0.237 ± 0.023) 

(6.5 ± 3.2 )(T - 273)  
+ (49 ± 47) 

 
16.27  

± 0.41  
(kJ 

mol-1) 

 
20.4  

± 0.7 
(J K-1 

mol-1) 

 
-172.6 
 ± 40 
(J K-1 

mol-1) 

0.069 

NaNO3 (-0.0012 ± 0.0008 )(T - 273)  
+ (0.160 ± 0.017) 

(3.7 ± 1.4 )(T - 273)  
+ (73 ± 21) 

0.066 

Na2SO4 (-0.0002 ± 0.0007 )(T - 273)  
+ (0.056 ± 0.015) 

(2.5 ± 1.8 )(T - 273)  
+ (85 ± 32) 

0.079 

 

4.7. Static Permittivity Modeling 

4.7.1. Temperature Dependence of Deionized Water 

Similar to Section 4.5, the first step needed to develop a temperature- and 

concentration- dependent model for the static permittivity of ionic aqueous solutions is to 

understand the mechanisms behind the temperature dependence of the static permittivity of 

deionized water (i.e. zero concentration solution). The analysis here starts with the 

Kirkwood-Frohlich equation [3], which relates the macroscopic permittivity parameters to 

microscopic dipolar mechanisms, as 

 
   

 

0 0

0 0

2

2

2
92 B

dc dc A d

dc

N g c
k T

    
 

 



 



  (4.13) 

where ε0dc is the static permittivity of deionized water (zero concentration), ε∞ 

(infinite permittivity) is the permittivity at a frequency well above that of the dominant 

relaxation frequency, ε0 = 8.8510-12 F/m is the free space permittivity, NA = 6.021023 mol-1 

is Avogadro’s number, kB = 1.3810-23 J/K is the Boltzmann constant,  is the dipolar 

moment of water molecule, cd (mol/m3) is the concentration of dipolar moments (water 
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Figure  4.5    Experimental data (symbols), Tables 4.1 to 4.3, and empirical model (solid 
lines), (4.11) and Table 4.6, of relaxation time for aqueous solutions of NaCl, NaNO3, and 
Na2SO4 at (a) 5 °C, (b) 10 °C, (c) 15 °C, (d) 20 °C, (e) 25 °C, and (f) 30 °C. The error bars 

represent the calculated standard uncertainty based on the Monte Carlo method (Tables 4.1 to 
4.3) and reflect a level of confidence of approximately 68 %. 
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Figure  4.6    Surface plot of temperature- and concentration-dependent relaxation time model 
(4.12) and experimental data (Tables 4.1 to 4.3) for aqueous solutions of (a) NaCl, (b) 

NaNO3, and (c) Na2SO4. 
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(c) 
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molecules) who contribute to the total polarization, and g is the Kirkwood correlation factor. 

After a few mathematical manipulations on (4.13), ε0dc can be written as 

 
   0

22 22 22

0 0

2 2
36 4 236 4

A d A d
dc

B B

N g c N g c
k T k T

     
 

   
       
 

  (4.14) 

in which ε∞, g, , and cd are all temperature-dependent parameters and must be treated 

separately, as discussed next.  

4.7.1.1. Infinite permittivity 

The infinite permittivity ε∞ can be written from Kirkwood-Frohlich equation, (4.13), 

as 

 

   
 

 
 

 

0 0 0 0 0

0

0
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               =
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


 







    




     
 



  (4.15) 

where 

 
2

09
A d

B

N g cX
k T



     (4.16) 

Taking crude estimates for g = 1, cd = 5.5 104 (mol/m3),  = 1.8553.33610-30 C.m 

(1.855 D), T = 25 °C, and ε0dc = 78.36 one would get X  4, and the second term in the 

bracket of (4.15), [(9+8X) 0
dc –16X / 8X 0

dc 2]  0.01.Using the identity (1+A)n   1+nA for A 

< 1, and approximating the bracket term, (4.15) can be written as 

 
   0 0 0 0

0 0

1.5 1.53.5 0.5 2.5 1.5 0.5

2 3 2
16 8 8 16 89 8 1 4

32 32
dc dc dc dc

dc dc

X X XX X
X X

   


 
   


   (4.17)  
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Figure  4.7    Measured ε∞ values for the deionized water, various authors. The standard 

uncertainty ranges corresponding to 68% confidence interval are also shown. 
 

Table  4.8     Estimates of ε∞ (4.18) from available literature values for ε0dc, g, cd, and  within 
the lowest and highest reported temperature range available. cd is approximated by analytical 

water concentration cs (refer to Section 4.6.1.3). 

T (°C) ε0dc [14] g [29]  (C.m) [30] cs (mol/m3) (4.25) ε∞ (4.18) 
5 87.91  2.6 2.453.33610-30 5.55104 3.01 
62  66.7  2.49 2.413.33610-30 5.45104 3.05 

 

in which taking the highest powers of the fraction reduces (4.17) to 

 
00 0

0.50.5

2
92 2 dcd

A d

Bc k T
N g cX

 


  
       

    (4.18) 

The above equation is an approximation that gives underestimated values for ε∞. 

However, the range of values that ε∞ (4.18) may get within the temperature range of this 

work, i.e., 5 °C to 30 °C, can be obtained by inserting available literature values for ε0dc, g,  

,and cd that contain that temperature range, as listed in Table 4.8. Also shown in Figure 4.7 

are the measured ε∞ values for the deionized water by various authors. As interpreted from 

Table 4.8 and Figure 4.7, the variation in calculated ε∞ (4.18)and measured ε∞ within the 
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corresponding lowest (5 °C) and highest (30 °C) temperature range will be relatively small 

compared to the uncertainty range existent in each reported value. As a result, for the purpose 

of reducing the complexity in deriving a temperature- and concentration-dependent model for 

static permittivity (4.14), it will be both theoretically and experimentally reasonable to 

assume that ε∞ is independent of variation in temperature. In the rest of this chapter, ε∞ is 

taken as the average of the measured values from 5 °C to 30 °C which equals ε∞ = 5.55 ± 

0.11. 

4.7.1.2. Kirkwood correlation factor 

The Kirkwood correlation factor, g, is a measure of intermolecular angular correlation 

between the dipole moments (water molecules) in material. The physical interpretation of 

this is that if one water molecule is aligned along the direction of the applied field, it tends to 

drag its neighbors (via the H-bonds) into line with it [29]. Increasing thermal agitation 

broadly speaking distorts or breaks down the H-bond network and so the angular correlation 

decreases.  

A thorough discussion on the history of calculating g has been made by Hasted [31]. 

Accordingly, the first structural calculation of g was made by Oster and Kirkwood [32]. They 

assumed that only the N1 nearest neighbors in the first hydration layer were correlated with 

the direction of the central water molecule. The number of nearest water molecules was 

calculated from X-ray diffraction methods [33]. The static permittivity calculated by Oster 

and Kirkwood, however, decrease too slowly with increasing temperature. Lennard-Jones 

and Pople [29] had put forward the alternative viewpoint of bond-bending model. In their 

model the correlation with water molecules outside the first hydration layer makes an 

appreciable contribution to the total alignments of water molecules due to hydrogen bonds. 

The bond-bending model shows to be adequate over a smaller temperature range, but at 
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higher temperatures, particularly above 100 °C, it would yield static permittvities 

systematically high [31].  

Haggis et al. [20] made a statistical analysis of their bond-breaking model. In this 

model water is described as a structure in which each water molecule is striving to bond itself 

tetrahedrally to four neighboring molecules, but in which bonds are continually breaking and 

reforming. For a certain percentage p of hydrogen bonds broken at a given temperature T, 

there will be an equivalent percentage ni of molecules forming i = 0, 1, 2, 3, or 4 bonds. The 

Kirkwood correlation factor g and the dipolar moment  presented in (4.13) are then written 

as [20] 

 
 

   
4

2 2

0 100 i
i

i
i

n Tg g T T 


   (4.19) 

where gi(T) and i(T) are the correlation factor and the dipolar moment of a water molecule 

connected to i hydrogen bond, which depend on temperature. From the data presented in [20] 

for ni, gi, and i at five discrete temperatures (T = 0, 25, 60, 100, 200, and 300 °C) and 

corresponding percentage of hydrogen bonds broken (p = 9, 11.3, 15.8, 20.2, 34.1, and 61.3 

%), the right hand side of (4.19) can be well approximated by a linear function with respect 

to p (R-squared = 0.9938) as 

 
 

    2

4
2

1
0 100

i
ii

i

n T g v p vT T


      (4.20) 

where v'1 and v'2 are the fitting parameters of the linear model. The percentage of hydrogen 

bonds broken p is related to temperature T through [20] 
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where L(T) (J/mol) is the latent heat of vaporization, W273 = 10.46103 J/mol is the energy 

necessary to overcome the van der Waals forces at 0 °C (273 K), and H273= 18.83103 

J/mol is the activation enthalpy of hydrogen-bond breaking down at 0 °C (273 K). As in 

Haggis’s time there were no available data for L(T) for a broader range of temperatures, we 

can take our step from this point and employ a temperature-dependent model of L(T). Xiang 

[34] constructed a three-parameter system-dependent physical model for the latent heat of 

vaporization L(T) of water covering the entire range from the triplet point temperature Tt = 

0.16 °C (273.16 K) to the critical point Tc = 374.096 °C (647.096 K) as  
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  (4.22) 

where T and Tc are in kelvin, and R = 8.3145 J mol-1 K-1 is the universal gas constant. 

Inserting (4.22) into (4.21) and then employing it in (4.20), we get  
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Finally, employing (4.23) into (4.19), we can formulate a model for g2 as 
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where v1 and v2 are the adjustable fitting parameters which will be used to fit the measured 

static permittivity within the temperature range of this work (5 °C to 30 °C), and 0 = 

1.8543.33610-30 C.m (1.854 D) [35] is the dipolar moment of an unbonded water molecule 

which is unaffected by any neighboring molecule via hydrogen bond.  

4.7.1.3. Hydrogen-bonded molecules concentration 

The concentration of dipolar moments (water molecules) cd, which contribute to the 

dominant relaxation process, is due to the concentration of hydrogen-bonded (H-bonded) 

water molecules. This concentration, however, is not directly accessible, because, in the 

water system, H-bonded and free (single) water molecules co-exist at the same time. The free 

water molecules, which are not connected to any hydrogen bond, are responsible for a 

weaker high-frequency relaxation process at around ~ 120 GH. The analytical solvent 

(water) concentration cs, which can be calculated directly from the density  (g/L) and the 

molecular weight M = 18.0153 (mol/g) of water, as 

 
310 ( )( )s

Tc T
M


   (4.25) 

comprises the total concentration of water molecules including H-bonded and free molecules. 

As a result, it is permissible to write cd in terms of cs as 

 ( ) ( )sdc T c T   (4.26) 

where 0 <  < 1 is assumed to be constant. The temperature-dependent water density (T) 

(g/L) can be written based on Kell formula as [36] 
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4.7.1.4. Model 

After taking care of temperature dependence of ε∞, g, , and cd in Sections 4.6.1.1 to 

4.6.1.3, the complete model temperature-dependent static permittivity model of the deionized 

water, ε0dc(T), can be derived by employing (4.24) to (4.27) into (4.14) as 
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where G is  
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and v1 and v2 are the adjustable fitting parameters ( is also captured by v1 and v2). The 

experimental static permittivities of deionized water (c = 0) as listed in Table 4.1 for 

temperature range from 5 °C to 30 °C are fitted using (4.28). The corresponding parameters 

are listed in Table 4.9. The resulting plot is also shown in Figure 4.8. 

4.7.2. Temperature Dependence of Ionic Aqueous Solutions 

The concentration-dependent empirical model of static permittivity at a constant 

temperature was proposed in Chapter 2. In this section the model is developed to include the 

temperature dependence of the static permittivity for NaCl, NaNO3 and Na2SO4 aqueous 

solutions within the range of concentrations and temperatures studied in this work. The 

concentration-dependent static permittivity εdc(c) at each temperature can be written as 
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Figure  4.8    Static permittivity, data (symbols) of various authors, and temperature-

dependent model (4.28) of deionized water as a function of temperature T. 
 

Table  4.9     Fitting parameters for the temperature-dependent model of static permittivity 
ε0dc(T), (4.28), of deionized water. The fitting procedure was performed for the measured 

data within 5 °C to 30 °C. The sum of squared errors (sse) of the fit is also shown. Also see 
Figure 4.8.  

v1 v2 Tc  
(K) 

W273 
(kJ/mol) 

H273 
(kJ/mol) 

∞ sse 

0.6811 ±  0.013 0.753 ±  0.001 647.096 10.46 18.83 5.55 0.004 
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(4.30) 

where 1 (L0.5/mol0.5), 2 (L/mol), and 3 (L/mol)  are adjustable fitting parameters extracted 

through the fitting procedure at each temperature, εe = 2 is approximated for nonpolar solutes 

[37], v(c) = cM/ρ is volume fraction of the solute where c (mol/L),  (g/L), and M (g/mol) 

st
at

ic
 p

er
m

itt
iv

ity
 



www.manaraa.com

121 

are concentration of solute, water density, and solute molecular weight, respectively, (c) 

(S/m) is the measured specific conductivity of the solution (Tables 4.1 to 4.3), and τ0 (s) and 

ε0dc are the measured relaxation time and static permittivity of the deionized water (Table 

4.1). The experimental static permittivities of NaCl, NaNO3 and Na2SO4 aqueous solutions as 

listed in Tables 4.1 to 4.3 were fitted using (4.30) at each temperature (5 °C to 30 °C) and the 

fitting parameters 1, 2, and 3 were calculated as in Table 4.10. The resulting plots are also 

depicted in Figure 4.9. 

The static permittivity behavior with respect to concentration has been thoroughly 

discussed for NaCl, NaNO3, and Na2SO4 aqueous solutions in Chapter 2. Within the 

concentration range of this work (~ mmol/L), the Debye-Falkenhagen effect, characterized 

by 1, causes a slight increase in static permittivity with concentration for NaCl and NaNO3 

aqueous solutions. In addition, the eventual decline in static permittivity as concentration 

increases is represented by γ3 (dielectric saturation effect) which is more pronounced for 

Na2SO4. 

As temperature increases, the initial increase in static permittivities is more 

observable. One speculation is that the corresponding Debye length (Chapter 2) of the 

induced dipolar moment created by ionic atmosphere polarization increases with 

temperature. The resulting Debye-Falkenhagen effect (induced polarization), characterized in 

overall by 1exp(-2c), therefore, becomes stronger. The dielectric saturation effect, which is 

characterized by 3, on the other hand, decreases with temperature. This is because water 

molecules in the hydration layer of ions become more agile with increasing temperature and 

are no longer bonded to ions, and thus, can contribute to the total polarization (static 

permittivity) of the system. 
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Considering the range of uncertainties associated with 1, 2, and 3 (Table 4.10) for 

various temperatures, the temperature dependence of these parameters can be best modeled 

by a linear behavior. As a result, the complete temperature- and concentration-dependent 

model of the static permittivity εdc(c, T) for NaCl, NaNO3, and Na2SO4 aqueous solutions can 

be obtained as  
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 (4.31) 

where  ̂1(T), ̂2(T), and  ̂3(T) are the temperature-dependent linear functions calculated for 1, 

2, and 3 (Table 4.10), respectively, and are given in Table 4.11. (T, c) (S/m) is the 

analytical specific conductivity (4.7), and τ0(T) (s) and ε0dc(T) are the temperature-dependent 

models for the relaxation time (4.9) and static permittivity (4.28) of deionized water.  

The surface plots demonstrating the static permittivity (4.31) as a function of 

concentration and temperature, along with the measured data (Tables 4.1 to 4.3) for NaCl, 

NaNO3 and Na2SO4 aqueous solutions are shown in Figure 4.10. The required parameters to 

fully describe the model for each ionic aqueous solution are listed in Table 4.11. The sum of 

squared errors (sse) of the surface-plot fits (4.31) and the measured data are also given in 

Table 4.11. 
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Table  4.10   Parameters of semi-empirical static permittivity model, (4.30), of aqueous NaCl 
(c = 0 to 10.275 mmol/L), NaNO3 (c = 0 to 14.31 mmol/L), and Na2SO4 (c = 0 to 11.36 

mmol/L) solutions for discrete temperatures from 5 °C to 30 °C. The specific conductivities 
 for each solution are taken from Tables 4.1 to 4.3. The relaxation time τ0 and static 
permittivity ε0dc of deionized water at each temperature are taken from Table 4.1. The 

standard uncertainties of the fitting parameters were calculated based on Monte Carlo method 
and provide a level of confidence of approximately 68 %. 

NaCl  
T (°C) 5 10 15 20 25 30 
1 (L0.5/mol0.5) 0.47 ± 0.21 0.81 ± 0.36 1.45 ± 0.58 2.05 ± 0.76 2.31 ± 0.40 1.87 ± 0.53 
2 (L/mol) 190 ± 83 178 ± 92 192 ± 99 147 ± 83 115 ± 49 142 ± 60 
3 (L/mol) 5.7 ± 3.5 4.6 ± 3.0 2.8 ± 1.5 0.482  

± 0.079 
0.0029  

± 0.0014 
0.0040  

± 0.0021 
NaNO3 

1 (L0.5/mol0.5) 0.56 ± 0.33 0.57 ± 0.33 0.44 ± 0.26 0.77 ± 0.41 0.96 ± 0.50 0.93 ± 0.45 
2 (L/mol) 144 ± 70 131 ± 61 60 ± 25 107 ± 49 29 ± 9 95 ± 48 
3 (L/mol) 13.3 ± 3.6 12.1 ± 4.0 10.1 ± 2.5 10.3 ± 4.2 10.4 ± 4.1 10.4 ± 3.6 

Na2SO4 
3 (L0.5/mol0.5)* 16.3 ± 3.1 11.8 ± 3.3 14.5 ± 2.8 12.4 ± 2.9 12.0 ± 2.7 8.3 ± 3.1 

* For sodium sulphate data, 1 and 2 are set to zero. 

 

Table  4.11   Parameters of temperature- and concentration-dependent static permittivity 
model, (4.31), for aqueous NaCl (c = 0 to 10.275 mmol/L), NaNO3 (c = 0 to 14.31 mmol/L), 

and Na2SO4 (c = 0 to 11.36 mmol/L) solutions. In (4.31), (T, c) (S/m) is calculated from 
(4.7), τ0(T) (s) from (4.9) and the parameters in Table 4.5, and ε0dc(T) from (4.28) and the 

parameters in Table 4.9. The standard uncertainties of the fitting parameters were calculated 
based on Monte Carlo method and provide a level of confidence of approximately 68 %. The 

sum of squared errors (sse) of the surface-plot fits and the measured data are also shown. 

  ̂1(T) (L0.5/mol0.5) ̂2(T) (L/mol) ̂3(T) (L/mol) sse  

NaCl (0.069 ± 0.020)(T - 273)  
+ (0.28 ± 0.39) 

(-2.7 ± 1.1)(T - 273) 
+ (208 ± 21) 

(-0.256 ± 0.044)(T - 273)  
+ (6.76 ± 0.85) 0.073 

NaNO3 
(0.020 ± 0.070)(T - 273)  
+ (0.35 ± 0.13) 

(-2.9 ± 2.1)(T - 273) 
+ (145 ± 40) 

(-0.108 ± 0.046)(T - 273)  
+ (12.97 ± 0.90) 0.082 

Na2SO4
* - - (-0.237 ± 0.094)(T - 273)  

+ (16.7 ± 1.8) 0.126 
* For sodium sulphate data, 1 and 2 are set to zero. 
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Figure  4.9    Experimental data (symbols), Tables 4.1 to 4.3, and semi-empirical model (solid 
lines), (4.30) and Table 4.10, of static permittivity for aqueous solutions of NaCl, NaNO3, 
and Na2SO4 at (a) 5 °C, (b) 10 °C, (c) 15 °C, (d) 20 °C, (e) 25 °C, and (f) 30 °C. The error 

bars represent the calculated standard uncertainty based on the Monte Carlo method (Tables 
4.1 to 4.3) and reflect a level of confidence of approximately 68 %. 
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Figure  4.10  Surface plot of temperature- and concentration-dependent static permittivity 
model (4.31) and experimental data (Tables 4.1 to 4.3) for aqueous solutions of (a) NaCl, (b) 

NaNO3, and (c) Na2SO4. 

(a) 

(c) 

(b) 
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4.8. Three-Dimensional Trajectory Plots 

As discussed in Chapter 3, static permittivity εdc, relaxation time τ, and specific 

conductivity  are recognized as potential indicators of ion concentration and type. To 

identify an ion and measure its concentration, it was proposed to consider, simultaneously, 

three dimensions of data. Figure 4.11 shows a 3D trajectory plot of measured and fitted static 

permittivity εdc, relaxation time τ, and conductivity  data for NaCl, NaNO3, and Na2SO4 

aqueous solutions for different temperatures from 5 °C to 30 °C. According to Figure 4.11, 

the 3D trajectory for each solution type is a unique curve in εdc-τ- space. This suggests that 

the ion type and concentration of an unknown electrolyte solution can be found by measuring 

its dielectric spectrum, extracting εdc, τ, and  parameters, and mapping these indicators to a 

benchmark data set from which the ion type and concentration can be inferred. 

4.9. Conclusion 

The dielectric spectra of agriculturally-relevant low concentration aqueous solutions 

of sodium chloride (NaCl), sodium nitrate (NaNO3), and sodium sulphate (Na2SO4) that are 

commonly found in tile drainage waters were analyzed through well-controlled laboratory 

experiments. The Debye fitting parameters including static permittivity εdc, relaxation time τ, 

and specific conductivity  were carefully modeled as a function of concentration and 

temperature, based on existent molecular dynamics and mechanisms present in low-

concentration ionic aqueous solutions. The analytical model presented for specific 

conductivity has accounted for the electrophoretic and asymmetric relaxation effects. Within 

the range of dilute concentrations (< 0.01 mol/L) the conductivity follows nearly a linear 

relationship with concentration. It was also shown that the specific conductivity increases 

with increasing temperature, due to increasing mobility of ions. The semi-empirical model 
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Figure  4.11  3D trajectory plot mapped from extracted measured (symbols) and fitted (solid 
lines) static permittivity εdc, relaxation time τ, and conductivity  of NaCl (c = 0 to 10.275 
mmol/L), NaNO3 (c = 0 to 14.31 mmol/L) and Na2SO4 (c = 0 to 11.36 mmol/L) solutions at 
(a) 5 °C, (b) 10 °C, (c) 15 °C, (d) 20 °C, (e) 25 °C, and (f) 30 °C. For clarity, error bars that 

represent the standard uncertainty of the data (Tables 4.1 to 4.3) are not shown in the figures. 
The 2D contour plots of each pair of fitted parameters are projected onto the corresponding 

planes for NaCl (dashed-dotted line), NaNO3 (solid line) and Na2SO4 (dashed line) 

(a) (b) 

(c) (d) 

(e) (f) 
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derived for the relaxation time has been developed on the basis of Eyring’s approach. The 

model successfully estimates the resulting decrement in the relaxation time as a function of 

temperature and concentration. The resulting decrement in the relaxation time, in general, 

follows the trend NaCl > NaNO3 > Na2SO4 at various temperatures, which can be attributed 

to structure maker and structure breaker ion effects. The semi-empirical static permittivity 

model has efficiently accounted for contributions due to dilution and internal depolarizing 

fields, kinetic depolarization, dielectric saturation, and the Debye-Falkenhagen effect. The 

results have shown that the Debye-Falkenhagen effect, which is observed as initial increase 

in static permittivity with concentration, is more pronounced for NaCl and NaNO3 aqueous 

solutions, particularly at higher temperatures. The dielectric saturation effect, on the other 

hand, decreases with temperature, mainly because water molecules in the hydration layer of 

ions become more agile with increasing temperature and hence contribute to the total 

polarization characterized by static permittivity.   

The methodology taken here is not only useful for ionic aqueous solutions presented 

in this work, but also other types of contaminant ions found commonly in water sources, such 

as bicarbonate HCO3
-, calcium Ca2+, magnesium Mg2+, nitrite NO2

-, and phosphate PO4
3-. 

Highly accurate measurements and experimental data will be needed to derive appropriate 

models for these ions. 
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CHAPTER 5.    GENERAL CONCLUSION 

5.1. Summary  

The research presented in this dissertation is motivated by a need for an effective, 

real-time, and affordable sensing system for monitoring of contaminant ions and their 

concentrations in tile-drained water. High levels of nitrate, which is mainly due to efflux 

from agricultural lands, is a major contributor to hypoxic conditions in receiving waters and 

is expensive to remove from drinking water. In recent years, great efforts have been devoted 

to the development of effective ion monitoring systems that are capable of operating with 

very low (~ millimoles per liter), agriculturally relevant concentrations. Most of these 

systems, however, do not meet all the criteria mentioned above. The dielectric spectroscopy 

method within radio-frequency and microwave frequency ranges is proposed, here, as a 

potential tool to identify ions and estimate their concentrations in agriculturally-relevant 

aqueous solutions. The dielectric properties of agriculturally-relevant aqueous solutions of 

sodium chloride (NaCl), sodium nitrate (NaNO3), and sodium sulphate (Na2SO4) that are 

among the most common ionic pollutants found in agricultural tile drainage waters in Iowa 

and the United States have been thoroughly investigated. Assessment of measurement 

uncertainties, which comprise random and systematic errors, has been conducted. It has been 

shown that systematic errors, which are due to non-ideal probe dimensions, imperfect 

instrument (VNA) calibration, calibration of the probe (short-air-load method), and cable 

phase instability, are the main contributors to the measurement uncertainty in both real ' and 

imaginary " permittivity values with relative standard uncertainties around or below 1 %, 

and are far larger than the random errors, whose relative standard uncertainties are around 0.1 

%. Furthermore, covariance matrix and Monte Carlo methods have been conducted to 



www.manaraa.com

133 

calculate the associated uncertainties of the extracted indicator parameters. The uncertainty 

values evaluated through the Monte Carlo method have been found to be slightly higher than 

those evaluated through the covariance matrix method. The Monte Carlo method, however, 

considerably reduces the tediousness of analytical calculations associated with the covariance 

matrix method. Dielectric spectra of samples of various concentrations have been measured 

at various temperatures and fitted using a single-term Debye relaxation model which is found 

to be the best model within the frequency range under consideration, i.e., 200 MHz to 20 

GHz. The Debye relaxation parameters which include static permittivity dc, relaxation time 

τ, infinite permittivity ∞, and specific conductivity , along with the associated uncertainties 

for each of NaCl, NaNO3, and Na2SO4 aqueous solutions have been extracted from 

corresponding dielectric spectra. The static permittivity dc, relaxation time τ, and specific 

conductivity  have demonstrated useful trends as potential indicators of ion concentration 

and type. A method of judiciously exploiting the indicators, by means of 3D trajectory plot, 

has been proposed to uniquely identify an ion and infer its concentration. The 3D trajectory 

plot suggests that the ion type and concentration of an unknown ionic aqueous solution can 

be found by measuring its dielectric spectrum, extracting εdc, τ, and  parameters, and 

mapping these indicators to a benchmark data set from which the ion type and concentration 

can be inferred. The benchmark data set for single-type ion systems of NaCl, NaNO3, and 

Na2SO4 aqueous solutions within a broad range of agriculturally-relevant concentrations, i.e., 

0 to 20 mmol/L, and temperatures, i.e., 5 °C to 30 °C in 5 °C increments have been provided 

by this research. Analytical and semi-empirical concentration- and temperature-dependent 

parametric models of specific conductivity (c, T), static permittivity dc(c, T), and relaxation 

time τ(c, T), accounting for physical chemistry and molecular dynamics for each ionic 
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system of NaCl, NaNO3, and Na2SO4 have been developed. The analytical conductivity 

model presented, which is based on Debye, Huckel, and Onsager (DHO) theory, accounts for 

the electrophoretic and asymmetric relaxation effects, and agrees well (~ 1% difference at 

most) with the experimental data within the concentration range studied. The conductivity 

increases with concentration and temperature and in general the conductivity magnitude 

follows Na2SO4
 > NaCl > NaNO3

 at each temperature and concentrations. The semi-empirical 

relaxation time model, which is directly proportional to temperature and the number of 

hydrogen bonds needed to be broken for the ability of a water molecule, has been developed 

on the basis of Eyring’s approach. The model successfully estimates the resulting decrement 

in the relaxation time as a function of temperature and concentration. The resulting 

decrement in the relaxation time, in general, follows the trend τNa2SO4
 > τNaNO3 

> τNaCl at 

various temperatures. The semi-empirical static permittivity model has efficiently accounted 

for contributions due to dilution and internal depolarizing fields, kinetic depolarization, 

dielectric saturation, and the Debye-Falkenhagen effect. The results have shown that the dec-

rements in static permittivity due to aggregation of dilution and internal depolarizing field, 

kinetic depolarization, and dielectric saturation follow the trend dcNaCl > dcNaNO3
 > dcNa2SO4

 

at various temperatures. In addition, within the low concentration range studied, it has been 

observed that in NaCl and NaNO3 solutions there is significant positive contribution due to 

the Debye-Falkenhagen effect that increases the static permittivity, particularly at lower 

concentrations. This effect becomes more pronounced as temperature increases. The Debye-

Falkenhagen effect has also been discussed to be possibly related to the electrophoretic effect 

and the coordination number, leading to the Debye-Falkenhagen effect strength to follow 

NaCl > NaNO3 > Na2SO4. 
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All in all, the research presented in this dissertation lays a foundation upon which an 

electrical sensing system can be designed for the efficient monitoring and analysis of 

agriculturally-relevant contaminant ions and their concentrations in tile drainage waters. A 

method based upon dielectric spectroscopy can potentially address the need for a fast, real-

time, field-deployable, and economically feasible sensor, improving upon existing high-cost 

or non-durable monitoring systems.  

5.2. Feasibility of Potential Sensor 

Cost 

A sensor capable of measuring the dielectric spectra of samples can be designed 

based on well-known resonant methods, such as, open-ended coaxial resonators. The 

manufacturing cost of such a sensor would be low, as it can be made of inexpensive and 

readily available coaxial cables. Bulk manufacturing would further lower the cost of 

production. In addition, it may be possible to measure the dielectric spectra at some, but 

enough, discrete frequencies (resonance frequencies) which make the sensor to be used in 

conjunction with a much simpler and less expensive measuring device than a broadband 

Vector Network Analyzer (VNA). A phase-locked loop (PLL) can be implemented to 

generate frequency stable signals at desired discrete frequencies. The use of such method 

would render the resonant sensor a much more economically viable system than broadband 

methods as well as the ultraviolet (UV) absorption sensors. 

Sensitivity 

The rather large uncertainties quantified in this research for the individual extracted 

dielectric indicators at these agriculturally-relevant low concentrations do not mask the 

general trends of the indicators when concentration and temperature change. In the real field 

environment, however, these may interfere with the successful interpretation of measured 
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data. A lot of care should then be devoted to designing a highly-sensitive sensor that properly 

characterizes the environment (e.g. temperature) as well as the solutions of interest. As a 

suggestion, this could be potentially overcome by providing a large input power to the 

system (in the order of a few Watts), or using a suitable Low Noise Amplifier (LNA) to 

increase the overall signal power, and making it easier to separate it from the noise 

background. 

Field Deployment 

A resonant sensor can be designed to fit into standard tile drains. The part of the 

sensor which interacts with the solution can be encapsulated in a thin chemically-inert 

polymer coating, for example, PTFE tape, to prevent the conductor from corroding. This will 

result in the sensor having high durability when compared to an ion-selective electrode (ISE) 

sensor. Another important factor which requires further research to make the sensor field 

deployable is the knowledge of performance of the sensor when the sample is flowing. 

Uneven flow in different parts of the sample may lead to turbulences, locally increasing the 

temperature of certain regions and thus deteriorating results. This can be avoided by placing 

the sensor in a tank storing the tile drainage water where the flow can be expected to be 

considerably less.  

Real Time Operation 

The interaction of the molecular dipoles and ions with an applied electric field is 

almost instantaneous at RF and MW frequencies (200 MHz to 20 GHz studied here). As a 

result, the operation would be real time for practical purposes. The speed of operation, 

indeed, is likely to be limited by the rate at which the data can be collected and read. 
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5.3. Future Directions 

Mixture of Ions 

Driven by the preceding section, the future work on dielectric spectroscopy and 

characterization of ionic aqueous solutions would involve measurements and highly accurate 

experimental data for other ionic pollutants, such as bicarbonate HCO3
-, calcium Ca2+, 

magnesium Mg2+, nitrite NO2
-, and phosphate PO4

3- found commonly in tile-drainage waters. 

In a tile drain containing agricultural efflux, there would be multiple types of compounds 

dissolved in water. The next step could be further development of the dielectric spectroscopy 

method for multi-substance systems and distinguishing between multiple substances present 

simultaneously in a sample solution. In cases of ionic and non-ionic substances present in the 

sample simultaneously, one way possible can be employing multiple-term relaxation models 

to fit the dielectric spectra, in which, each relaxation term correspond to particular substance 

of interest. If the sample consists of multiple ions dissolved in water, it may be practically 

difficult to decompose the individual relaxation terms associated with each ion, as they 

nearly overlap each other within the low ionic concentrations. One speculative way of 

attacking such cases is suggested as follows. Let’s assume there are three types of unknown 

ion systems with unknown concentrations c1, c2, and c3 in the sample, and also, we already 

measured the benchmark relaxation parameters, i.e., static permittivity, relaxation time, and 

conductivity, for a pool of different ion systems (NaCl, NaNO3, Na2SO4, MgCl2, CaCl2, 

NaHCO3, NaNO2, etc.) at different concentrations. We measure the dielectric spectra of the 

sample, extract its relaxation parameters, i.e., dc, τ, and , and calculate the differences with 

respect to the relaxation parameters of deionized water (denoted by superscript 0), as 
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where (c)s represent the difference of corresponding benchmark relaxation parameters for 

each ion system and those of deionized water, e.g., τ
NaCl(c) = τ0- τNaCl(c). As models for s 

are non-linear (Chapter 4), each system of equation might not be well-posed and have a 

unique solution for c1, c2, c3. A conducive approach, therefore, is to employ methods of 
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optimization (simply meaning to play around with variables, but in a judicious way) to find a 

set of c1, c2, c3 that satisfies one of the n systems of equations, i.e., (4.33), in the best way 

possible. We can then refer to that system of equation as the system representing the 

unknown ions (which are now found) with corresponding c1, c2, and c3 concentrations found 

from the optimization method. 

Low-Concentration Measurements  

In terms of physical chemistry, the experimental observance of the Debye-

Falkenhagen (DF) effect, predicted to exist at low ionic concentrations, has been a topic of 

debate for a long time. In this research the initial increase in measured static permittivity of 

sodium chloride (NaCl) and sodium nitrate (NaNO3) has been attributed to the DF effect. 

Further measurements and highly accurate experimental data for other ionic systems are 

desirable to extend our knowledge of ionic atmosphere polarization and the positive 

contribution of the DF effect to static permittivities in low concentration ionic solutions. One 

idea to improve the accuracy of measurements at low ionic concentrations which can also be 

beneficial in a potential practical system, could include the idea of manipulating the sample 

to be more amenable to measurements by deliberately polarizing the sample through a direct-

current (DC) bias field generated from designed electrodes. This may amplify the response of 

the sample in the dielectric spectra, particularly, at lower frequencies where static 

permittivity and conductivity are pronounced, so a better resolution can be obtained.  As 

measurement systems and dielectric spectra are more responsive to high-concentration 

samples, another idea could include driving off the water through heat which results in 

increased concentration (per unit volume) of the sample. 
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Other Applications 

The concept of employing dielectric spectroscopy in identifying substances and their 

concentrations can be extended to other applications and is likely to be particularly 

successful when the target substances are of high concentration (~ mol/L) such as in 

wastewater treatment.  
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